4.6 Article

Telomere and ATM Dynamics in CD4 T-Cell Depletion in Active and Virus-Suppressed HIV Infections

Journal

JOURNAL OF VIROLOGY
Volume 94, Issue 22, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.01061-20

Keywords

ATM; apoptosis; DNA damage response; HIV; telomere; T-cell homeostasis; ATM kinases; telomere; apoptosis

Categories

Funding

  1. National Institutes of Health [R01AI114748, R21AI138598]
  2. Veteran Administration Merit Review awards [1I01BX002670, 1I01BX004281]
  3. Department of Defense [PR170067]

Ask authors/readers for more resources

CD4 T-cell depletion is a hallmark of HIV/AIDS, but the underlying mechanism is still unclear. We have recently shown that ataxia-telangiectasia-mutated (ATM) deficiency in CD4 T cells accelerates DNA damage, telomere erosion, and cell apoptosis in HIV-infected individuals on antiretroviral therapy (ART). Whether these alterations in ART-treated HIV subjects occur in vitro in HIV-infected CD4 T cells remains unknown. In this study, we employed a cellular model of HIV infection to characterize the mechanisms underlying CD4 T-cell destruction by analyzing the telomeric DNA damage response (DDR) and cellular apoptosis in highly permissive SupT1 cells, followed by the validation of our observations in primary CD4 T cells with active or drug-suppressed HIV infection. Specifically, we established an in vitro HIV T-cell culture system with viral replication and raltegravir (RAL; an integrase inhibitor) suppression, mimicking active and ART-controlled HIV infection in vivo. We demonstrated that HIV-induced, telomeric DDR plays a pivotal role in triggering telomere erosion, premature T-cell aging, and CD4 T-cell apoptosis or depletion via dysregulation of the PI3K/ATM pathways. This in vitro model provides a new tool to investigate HIV pathogenesis, and our results shed new light on the molecular mechanisms of telomeric DDR and CD4 T-cell homeostasis during HIV infection. IMPORTANCE The hallmark of HIV infection is a gradual depletion of CD4 T cells, with a progressive decline of host immunity. How CD4 T cells are depleted in individuals with active and virus-suppressed HIV infection remains unclear. In this study, we employed a cellular model of HIV infection to characterize the mechanisms underlying CD4 T-cell destruction by analyzing the chromosome end (telomere) DNA damage response (DDR) and cellular apoptosis in a T-cell line (highly permissive SupT1 cells), as well as in primary CD4 T cells with active or drug-suppressed HIV infection. We demonstrated that HIV-induced telomeric DDR plays a critical role in inducing telomere loss, premature cell aging, and CD4 T-cell apoptosis or depletion via dysregulation of the PIWATM pathways. This study sheds new light on the molecular mechanisms of telomeric DDR and its role in CD4 T-cell homeostasis during HIV infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available