4.7 Article

Investigation of kinetics and mechanism for the degradation of antibiotic norfloxacin in wastewater by UV/H2O2

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.jtice.2020.09.036

Keywords

UV/H2O2; Norfloxacin; Coexisting ions; Reactive oxygen species; Intermediate products; DNA gyrase A

Funding

  1. National Natural Science Foundation of China [41672340, 21976110, 11874244]

Ask authors/readers for more resources

This study investigates the degradation of norfloxacin by using UV combined with hydrogen peroxide (UV/H2O2) with different cations and anions. The inhibition effect order of cations for degradation of norfloxacin was Cu2+ > Ca2+ > Mg2+, attributed to the forms of the coordination compounds between norfloxacin and the cations. The inhibition effect order of anions for degradation of norfloxacin was CO32> NO3> SO42-, attributed to the ability and efficiency of the anions to quench center dot OH or H2O2. The order of the reactive oxygen species (ROS) contribution rate to the degradation of norfloxacin under UV/H2O2 was center dot OH (72.56%) > O-1(2) (24.24%) > other ROS (3.20%) based on the trapping experiments and electron spin resonance (ESR) measurements. There were at least 8 kinds of intermediate products, with charge-to-mass ratio (m/z) of 294, 267, 333a, 333b, 347, 335, 351 and 317, which were formed by attacks at the piperazine ring and F atom active sites. The F atom was replaced with -OH via a substitution reaction, resulting in P1 (m/z = 317) formation. The inhibition effect of P1 on DNA gyrase A was stronger than that of norfloxacin due to the binding free energy (the binding free energy of P1-DNA gyrase A was -12.8457 kJ/mol, and the binding free energy of norfloxacin-DNA gyrase A was-11.8488 kJ/mol). (c) 2020 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Engineering, Chemical

Deep feature representation with online convolutional adversarial autoencoder for nonlinear process monitoring

Xu Yang, Jieshi Xiao, Jian Huang, Kaixiang Peng

Summary: This study introduces an online convolutional adversarial autoencoder (AAE) model to learn representative industrial process information. By extracting features that reflect diverse information and follow a Gaussian distribution, the model improves the accuracy of fault detection and removes redundant information through a feature selection strategy.

JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS (2024)

Article Engineering, Chemical

Enhancing PEDOT modified electrode for tartrazine sensing through the immobilization of MIL-100(Fe) metal-organic framework

Shao-Yang Wu, Meng-Tsun Lai, Chung-Hui Hsu, Kevin C. W. Wu, Yesong Gu

Summary: This study investigated the effectiveness of using Fe-based MOF or MIL-100(Fe) in conjunction with a PEDOT-modified Pt electrode for detecting the synthetic azo dye tartrazine. By modifying the electrode with two different methods, favorable lower reductive potentials, competitive sensitivities, and good repeatability and stability were achieved in all MIL-100(Fe)/PEDOT/Pt electrodes.

JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS (2024)