4.6 Article

Phase- and Morphology-Controlled Synthesis of Tunable Plasmonic MoO3-x Nanomaterials for Ultrasensitive Surface-Enhanced Raman Spectroscopy Detection

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 124, Issue 38, Pages 21082-21093

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.0c06004

Keywords

-

Funding

  1. NCL [MLP031526]
  2. DST-SERB, New Delhi
  3. CSIR, New Delhi

Ask authors/readers for more resources

The enhancement of the surface-enhanced Raman scattering (SERS) property of the plasmonic metal oxide semiconductor nanostructures by controlling their phase, shape, size, and oxygen vacancy to detect trace amounts of organics is of significant interest. In this study, a simple surfactant-free hydrothermal strategy was proposed to fabricate crystalline h-MoO3-x and alpha-MoO3-x nanomaterials with tunable plasmonic properties. Herein, the crystal phase, morphology, and oxygen vacancy of MoO3-x nanostructures were precisely controlled under suitable synthetic conditions. The plasmonic properties of the as-synthesized h-MoO3-x and alpha-MoO3-x micro-/nanostructures were controlled by adjusting the residual volume in the autoclaving chamber. In addition, the plasmonic MoO3-x exhibited SERS activity with a detection limit as low as 1.0 x 10(-9) M and the maximum enhancement factor (EF) up to 6.99 x 10(5) for h-MoO3-x, while for alpha-MoO3-x, the detection limit was 1.0 x 10(-7) M with the corresponding EF up to 8.51 x 10(3), comparable with plasmonic noble metal nanomaterials without a hot spot.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available