4.7 Article

Effect of the type of soil on dimethyl phthalate degradation by ozone

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 270, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2020.110863

Keywords

Dimethyl phthalate; Ozone; Catalyst; Calcinated agricultural soil; Commercial sand

Funding

  1. Department of Graduate Study and Investigation of the Instituto Polit.ecnico Nacional of Mexico [20181434, 20200519]
  2. Fondo Sectorial de Investigaci.on para la Educaci.on CONACYT y FONCICYT [278228]

Ask authors/readers for more resources

In the present study, ozone was applied for the removal of dimethyl phthalate (DMP) from soil. The effect of several experimental parameters was investigated considering, the initial DMP concentration, ozone flow, the type of soil (sand and agricultural soil) and the presence of alpha-FOOH as a potential catalyst in the reaction system with sand. The elimination of DMP using ozone is significantly affected by the type of soil. In the case of sand, conventional ozonation was capable to degrade 74% of the initial DMP concentration (0.5 mg g(-1)) after 8 h of the reaction, however, the mineralization degree was below 50%. Under the same experimental conditions, the complete elimination of DMP was achieved when calcined agricultural soil was present reaching a 70% of mineralization. The presence of metal oxides in calcined agricultural soil combined with ozone produced oxidants species which were responsible of incrementing the mineralization degree (around 20% in comparison with the sand). The toxicity tests on lettuce seed demonstrated lower toxicity of DMP byproducts after ozonation. The DMP high removal efficiencies and the lower toxicity of generated byproducts in soil prove the applicability of ozone treatment for soil remediation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available