4.7 Article

Mechanical behavior of concretes containing waste steel fibers recovered from scrap tires

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 122, Issue -, Pages 649-658

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2016.06.113

Keywords

Scrap tires; Waste steel fibers; Fiber reinforced concrete; Mechanical behavior; Optimization

Funding

  1. ITU Project [38225]

Ask authors/readers for more resources

The paper presents the results of an experimental program in which steel fibers recovered from scrap tires were used to produce fiber reinforced concretes. Waste fibers having different geometrical characteristics were used in the mixtures at different percentages. To have reference concretes, a plain mixture without fibers and one mixture containing a commercial steel fiber were also prepared. Some mechanical properties such as compressive strength, splitting strength and flexural strength were determined. Load deflection behaviors including the post-peak responses were monitored by means of a closed-loop bending test set-up. Test results showed that the fibers recovered from scrap tires affected the mechanical behavior of concrete similar to the commercial fibers. Depending on the geometrical properties of the fibers and fiber content, the descending branch of the load-deflection curves were modified with the use of waste fibers, thus affecting the toughness of the concretes. Comparison of these curves indicated that the performances of the waste fibers were lower when compared to the commercial fiber used. Based on the test results obtained and the relative costs of the mixtures, a multi-objective simultaneous optimization technique was also performed to determine the optimum fiber type and content. This procedure indicated that the use of waste fibers can be optimized for producing fiber reinforced concrete. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Multidisciplinary Sciences

Effects of Activator Properties and Ferrochrome Slag Aggregates on the Properties of alkali-activated Blast Furnace Slag Mortars

Caner Elibol, Ozkan Sengul

ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING (2016)

Article Construction & Building Technology

A comparative study on the thermal conductivities and mechanical properties of lightweight concretes

Canan Tasdemir, Ozkan Sengul, Mehmet Ali Tasdemir

ENERGY AND BUILDINGS (2017)

Article Construction & Building Technology

Modulus of elasticity of substandard and normal concretes

Hasan Yildirirn, Ozkan Sengul

CONSTRUCTION AND BUILDING MATERIALS (2011)

Article Construction & Building Technology

Effect of cement type on the resistance of concrete against chloride penetration

Hasan Yildirim, Tolga Ilica, Ozkan Sengul

CONSTRUCTION AND BUILDING MATERIALS (2011)

Article Construction & Building Technology

Use of electrical resistivity as an indicator for durability

Ozkan Sengul

CONSTRUCTION AND BUILDING MATERIALS (2014)

Article Construction & Building Technology

Mechanical properties of slurry infiltrated fiber concrete produced with waste steel fibers

Ozkan Sengul

CONSTRUCTION AND BUILDING MATERIALS (2018)

Article Construction & Building Technology

Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete

Ozkan Sengul, Senem Azizi, Filiz Karaosmanoglu, Mehmet Ali Tasdemir

ENERGY AND BUILDINGS (2011)

Article Construction & Building Technology

Compressive Strength and Rapid Chloride Permeability of Concretes with Ground Fly Ash and Slag

Ozkan Sengul, Mehmet Ali Tasdemir

JOURNAL OF MATERIALS IN CIVIL ENGINEERING (2009)

Article Environmental Sciences

Use of waste ferrochromium slag as aggregate in concrete

Fatih Salihpasaoglu, Ozkan Sengul

JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT (2020)

Article Green & Sustainable Science & Technology

The use of waste glass as an activator in alkali-activated slag mortars

Saadet Gokce Gok, Ozkan Sengul

Summary: This study investigated the possibility of using waste glass as an alternative source of silicate in alkali-activated mixtures, finding that waste glass can be an effective replacement for sodium silicate. The mortar specimens produced with different molarities of sodium hydroxide and ground waste glass demonstrated certain mechanical and durability properties under various curing conditions.

PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-ENGINEERING SUSTAINABILITY (2021)

Article Construction & Building Technology

Electrical Resistivity Measurements for Quality Control During Concrete Construction

Ozkan Sengul, Odd E. Gjorv

ACI MATERIALS JOURNAL (2008)

Article Construction & Building Technology

Mechanical properties and rapid chloride permeability of concretes with ground fly ash

O Sengul, C Tasdemir, MA Tasdemir

ACI MATERIALS JOURNAL (2005)

Article Construction & Building Technology

Effect of Embedded Steel on Electrical Resistivity Measurements on Concrete Structures

Ozkan Sengul, Odd E. Gjorv

ACI MATERIALS JOURNAL (2009)

Article Construction & Building Technology

Study on the mechanical performance damage in laboratory-simulated periodic salt environment for asphalt concrete

Qi Jiang, Wei Liu, Shaopeng Wu, Xuanwen Gou

Summary: This study analyzes the erosion mechanisms of NaCl solution on asphalt concrete and finds that NaCl solution softens asphalt and promotes the intrusion of crystalline salt into it. Salt crystallization alters the surface roughness of aggregates, resulting in a decrease in skid resistance but an improvement in compressive strength. Additionally, the concentration of NaCl solution initially has no significant impact on the mechanical performance of asphalt concrete, but its domination gradually increases with the intensification of cyclic effects.

CONSTRUCTION AND BUILDING MATERIALS (2024)

Article Construction & Building Technology

Experimental study on tensile behaviors of cracked ultra-high performance concrete under freezing and thawing

Lili Kan, Lan-qing Dai, Ning Kong, Bin Peng, Fei Wang

Summary: This paper investigates the effect of freezing and thawing cycles on the tensile behavior of cracked ultra-high performance concrete (UHPC). The results show that long-term freezing and thawing action deteriorates the cracking strength, tensile strength, tensile strain, and strain energy of cracked UHPC. On the other hand, the action of water generally favors the development of tensile properties of UHPC. The crack distribution tends to be unsaturated under freezing and thawing environment, and the re-hydration reaction is hindered. The pore structure near the crack varies under different environments.

CONSTRUCTION AND BUILDING MATERIALS (2024)

Article Construction & Building Technology

Reuse of by-product gypsum with solid wastes-derived sulfoaluminate cement modification for the preparation of self-leveling mortar and influence mechanism of H3PO4

Xin Xiao, Jingwei Li, Qingke Meng, Xiangshan Hou, Yanhui Liu, Xujiang Wang, Wenlong Wang, Shengtao Lu, Yuzhong Li, Yanpeng Mao, Tong Li

Summary: Preparing gypsum-based self-leveling mortar (GSLM) using beta-hemihydrate gypsum and solid wastes-derived sulfoaluminate cement (WSAC) can improve the mechanical performance of the mortar, but phosphorus impurities can weaken the hydration speed and degree.

CONSTRUCTION AND BUILDING MATERIALS (2024)

Article Construction & Building Technology

Experimental study on the effect of cementation curing time on MICP bio-cemented tailings

Sihang Bao, Junzhen Di, Yanrong Dong, Ziqing Gao, Qing Gu, Yuanfang Zhao, Hongyu Zhai

Summary: Tailings dam break and leakage accidents pose a threat to the safety of people in mining areas and cause severe environmental pollution. This study focuses on solidifying tailing sand using microbial induced calcite precipitation (MICP) to improve strength and fix heavy metals. The curing time of MICP bio-cemented tailings is found to significantly impact the strength of tailings, while its effect on heavy metal fixation is minimal. The optimized MICP curing time is 10 days, resulting in improved strength and cementation of tailings particles.

CONSTRUCTION AND BUILDING MATERIALS (2024)

Article Construction & Building Technology

Multi-scale analysis of the effects of hysteresis on the hydrothermal behaviour of bio-based materials: Application to hemp concrete

Ferhat Benmahiddine, Fares Bennai, Achraf Charaka, Ameur El Amine Hamami, Abdelkader Tahakourt, Rafik Belarbi

Summary: This paper studied the effects of hysteresis on the hygrothermal behavior at the building scale. Through laboratory validation and numerical simulations, it was found that hysteresis has a significant impact on the relative humidity and total heat fluxes in buildings, while it does not have a noticeable effect on temperature variations.

CONSTRUCTION AND BUILDING MATERIALS (2024)

Article Construction & Building Technology

Investigation on strength and deformation properties of lateritic clay

You Gao, Wei He, Xiayang Zhang, De'an Sun, Pei Li

Summary: This study determined the boundary line between the swelling and compression deformation zone in lateritic clay through wetting tests, and proposed a simple bimodal SWRC model. It also found that the existing strength model underestimated the tested values in the medium to high suction range, therefore a segmented strength equation was introduced for enhanced predictions of the strength properties of lateritic clay.

CONSTRUCTION AND BUILDING MATERIALS (2024)

Article Construction & Building Technology

Performance assessment of sustainable biocement mortar incorporated with bacteria-encapsulated cement-coated alginate beads

Prabhath Ranjan Kumar Soda, Asheer Mogal, Kalyan Chakravarthy, Nikhil Thota, Nimish Bandaru, Sanjay Kumar Shukla, K. M. Mini

Summary: This study investigates the use of encapsulated bacteria to improve the self-healing ability of concrete. Through various tests, it is found that using 20% cement-coated alginate beads (CCAB) and 5% nanosilica (NS) can achieve optimal strength and healing. This research is significant for enhancing the durability of concrete.

CONSTRUCTION AND BUILDING MATERIALS (2024)

Article Construction & Building Technology

Development of photothermal-heat storage concrete incorporating super absorbent polymer

Shizhe Wang, Haiping Wu, Wen Yang, Wei Wang, Zhibo Zhu, Kun Nie, Luoxin Wang, Hua Wang, Jing Wu

Summary: In this study, photothermal-heat storage concrete (PHSC) was developed with excellent photothermal conversion performance and heat storage capacity. By absorbing and storing solar energy during the day and releasing it at night, PHSC can effectively reduce energy consumption in buildings.

CONSTRUCTION AND BUILDING MATERIALS (2024)

Article Construction & Building Technology

Investigating temperature change rate and pore confinement effect on thermal properties of phase change materials for de-icing and low-temperature applications in cementitious composites

Robin Deb, Jialuo He, Geetika Mishra, Yaghoob (Amir) Farnam

Summary: Incorporation techniques of phase change materials in cementitious composites have a significant influence on thermal properties. This study investigated the thermal behavior of low-temperature PCM when subjected to varying temperature change rates and pore confinement inside the porous network of lightweight aggregates. The results showed that ramp rates affect the nucleation and crystallization growth process during the phase transition, and the pore structure of the aggregates affects the supercooling phenomenon and confinement pressure of the PCM.

CONSTRUCTION AND BUILDING MATERIALS (2024)

Article Construction & Building Technology

Fatigue life of plain concrete subjected to low frequency uniaxial stress reversal loading

Eduardo Ferreira, Payam Sotoudeh, Dagmar Svecova

Summary: This study investigates the fatigue behavior of concrete under different stress reversal conditions. The results indicate that stress reversal generally causes more severe damage and reduces the cycles to failure compared to tensile fatigue. Additionally, adding some level of compression contributes to the energy required for failure under stress reversal fatigue. Specimens with higher concentration of fractured aggregates achieve longer fatigue lives.

CONSTRUCTION AND BUILDING MATERIALS (2024)

Article Construction & Building Technology

Development of rendering mortar from granite cutting waste and impact of accelerated aging environment on its adhesive strength

Mag Raj Gehlot, Sandeep Shrivastava

Summary: This study evaluates the compatibility relationship between plaster bonds and the substrate under an accelerated aging environment, and finds that incorporating an appropriate amount of granite cutting waste can improve the strength parameters and adhesion of the cement mortar.

CONSTRUCTION AND BUILDING MATERIALS (2024)

Article Construction & Building Technology

Bond behavior between carbon fabric reinforced cementitious matrix (FRCM) composites with added short fibers and concrete substrates

Min Zhang, Qirui Luo, Mingke Deng, Shixing Zhao

Summary: This study investigated the bond behavior between carbon FRCM composites with added short fibers and concrete substrates. The effects of different factors were considered and 36 specimens were tested and discussed. The experimental results were analyzed in terms of failure mode, load-slip curve, and characteristic parameters, and the contribution of weft yarns was taken into account in the developed bondslip model.

CONSTRUCTION AND BUILDING MATERIALS (2024)

Article Construction & Building Technology

Effects of heat-treatment on physical and mechanical properties of limestone

Dengkai Liu, Hongniao Chen, Ray Kai Leung Su

Summary: The susceptibility of building stones to fire and high temperature was investigated in this study by examining their physical and mechanical properties. The results show that both compressive and tensile properties of stones are affected by temperature changes. The tensile strength is particularly sensitive to temperature changes, requiring special attention to the components subjected to tensile stress in stone buildings. Principal component analysis was used to predict the mechanical properties of stones, providing a new method for calculating the residual mechanical properties after high temperature or fire.

CONSTRUCTION AND BUILDING MATERIALS (2024)

Article Construction & Building Technology

A novel roughness parameter for more precise estimation of the shear strength of concrete-to-concrete interfaces

Joso Maria Raposo, Eduardo Cavaco, Luis Costa Neves, Eduardo Julio

Summary: This paper investigates the correlation between the friction coefficient and the surface roughness of concrete-to-concrete interfaces. Experimental tests were performed on specimens with different surface treatments, and the surface roughness parameters were analyzed and correlated with the shear strength and friction coefficient. The results showed that certain roughness parameters had a strong positive correlation with the friction coefficient, while others had little or no correlation. A novel combined roughness parameter with optimized correlation was proposed.

CONSTRUCTION AND BUILDING MATERIALS (2024)

Article Construction & Building Technology

Recent advances and perspectives in circular bio-binder extender to substitute part of the fossil based binder in asphalt mixture

Chiara Riccardi, Massimo Losa

Summary: The interest in using bio materials in asphalt pavements is growing due to economic reasons and environmental benefits. This study aimed to review the use of bio extenders as additives in binders, with a focus on replacements greater than 20% of fossil binder. The properties of bio-extended binders were found to vary substantially depending on the biomass source and production process.

CONSTRUCTION AND BUILDING MATERIALS (2024)