4.5 Article

Modeling Car-Following Behaviour of Turning Movements at Intersections with Consideration of Turning Radius

Journal

JOURNAL OF ADVANCED TRANSPORTATION
Volume 2020, Issue -, Pages -

Publisher

WILEY-HINDAWI
DOI: 10.1155/2020/8884797

Keywords

-

Funding

  1. National Natural Science Foundation [71901134, 51942806]
  2. National Science Fund for Distinguished Young Scholars [51925081]
  3. Jiangsu Postdoctoral Research Funding Scheme [2018K118C]

Ask authors/readers for more resources

In order to deeply analyze and describe the characteristics of car-following behaviour of turning vehicles at intersections, the features and application conditions of classic car-following models were analyzed firstly. And then, through analysing the relationship between the maximum velocity of car-following vehicles and the turning radius of intersection, the differences in key variables between turning and straight car-following behaviour were identified. On the basis of Optimal Velocity (OV) model, a Turning Optimal Velocity (TOV) car-following model with consideration of turning radius and sideway force coefficient at intersections was developed. PreScan simulation was employed to build the scene of turning car-following process at an intersection. Based on linear stability analysis, the stability conditions of the TOV model were derived. And it was found that (1) the turning radius has a significant effect on the car-following behaviour of turning vehicles at intersections; (2) with the increase of the distance between vehicles, the driver's response sensitivity coefficient increases and then decreases and reaches the maximum value when the distance reaches the minimum safe distance; (3) with the increase of turning radius, the stability of the car-following fleet tends to decrease, and it is more likely to become a stop-and-go traffic flow. In addition, the numerical simulation results indicate that the TOV model can describe the car-following behaviour of turning vehicles more accurately with consideration of turning radius. The findings of this study can be used in the development of microscopic traffic simulation software and for improving traffic safety at intersections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available