4.7 Article

Automatic segmentation of maxillofacial cysts in cone beam CT images

Journal

COMPUTERS IN BIOLOGY AND MEDICINE
Volume 72, Issue -, Pages 108-119

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2016.03.014

Keywords

Asymmetry; Jaw cyst; Computer-aided diagnosis; Cone Beam Computed Tomography; Registration; Segmentation

Funding

  1. Grants-in-Aid for Scientific Research [26108004, 26108001] Funding Source: KAKEN

Ask authors/readers for more resources

Accurate segmentation of cysts and tumors is an essential step for diagnosis, monitoring and planning therapeutic intervention. This task is usually done manually, however manual identification and segmentation is tedious. In this paper, an automatic method based on asymmetry analysis is proposed which is general enough to segment various types of jaw cysts. The key observation underlying this approach is that normal head and face structure is roughly symmetric with respect to midsagittal plane: the left part and the right part can be divided equally by an axis of symmetry. Cysts and tumors typically disturb this symmetry. The proposed approach consists of three main steps as follows: At first, diffusion filtering is used for preprocessing and symmetric axis is detected. Then, each image is divided into two parts. In the second stage, free form deformation (FFD) is used to correct slight displacement of corresponding pixels of the left part and a reflected copy of the right part. In the final stage, intensity differences are analyzed and a number of constraints are enforced to remove false positive regions. The proposed method has been validated on 97 Cone Beam Computed Tomography (CBCT) sets containing various jaw cysts which were collected from various image acquisition centers. Validation is performed using three similarity indicators (Jaccard index, Dice's coefficient and Hausdorff distance). The mean Dice's coefficient of 0.83, 0.87 and 0.80 is achieved for Radicular, Dentigerous and KCOT classes, respectively. For most of the experiments done, we achieved high true positive (TP). This means that a large number of cyst pixels are correctly classified. Quantitative results of automatic segmentation show that the proposed method is more effective than one of the recent methods in the literature. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available