4.4 Article

Colour image enhancement with brightness preservation and edge sharpening using a heat conduction matrix

Journal

IET IMAGE PROCESSING
Volume 14, Issue 13, Pages 3202-3214

Publisher

WILEY
DOI: 10.1049/iet-ipr.2020.0393

Keywords

image colour analysis; image enhancement; heat conduction; brightness; image resolution; matrix algebra; colour image enhancement; brightness preservation; edge sharpening; heat conduction matrix; enhancement process; heat conduction equation; solid fluids; stagnant fluids; colour images; colour channel; RGB colour image; HSI colour model; feature matrix; negative values; positive values; zero values; negative HCM value; level enhancement; positive HCM value; level values; mean brightness value; RGB colour model; colour image details

Ask authors/readers for more resources

In this study, an enhancement process obtained by applying the heat conduction equation of solid and stagnant fluids on colour images is proposed. After the colour channel stretching, the RGB colour image was converted to the HSI model. The heat conduction equation was applied for each pixel on the I channel of the HSI colour model. The elements of the feature matrix called heat conduction matrix (HCM) can have negative, positive or zero values. A pixel with a small negative HCM value indicates that I needs level enhancement for a good image, whereas a small positive HCM value means that the I level value will be reduced and aligned with its neighbours. High positive or negative values are defined as the edges of the objects and the I level values of such pixels are not changed to protect the edges. In addition, whether HCM is negative or positive, the balanced increment and decrement path at a level I ensures that the mean brightness value performs natural protection. Finally, an enhanced image is obtained by transitioning from the HSI to the RGB colour model. Experimental results show that this method can enhance colour image details better than other methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available