4.4 Article

Genetic basis of SMARCB1 protein loss in 22 sinonasal carcinomas

Journal

HUMAN PATHOLOGY
Volume 104, Issue -, Pages 105-116

Publisher

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1016/j.humpath.2020.08.004

Keywords

Sinonasal SMARCB1-deficient carcinoma; Homozygous deletion; Next-generation sequencing

Categories

Funding

  1. Cancer Center Support Grant of the National Institutes of Health/National Cancer Institute [P30CA008748]

Ask authors/readers for more resources

SMARCB1-deficient sinonasal carcinoma (SNC) is an aggressive malignancy characterized by INI1 loss mostly owing to homozygous SMARCB1 deletion. With the exception of a few reported cases, these tumors have not been thoroughly studied by massive parallel sequencing (MPS). A retrospective cohort of 22 SMARCB1-deficient SNCs were studied by light microscopy, immunohistochemistry, fluorescence in situ hybridization (n = 9), targeted exome MPS (n = 12), and Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing (FACETS) (n = 10), a bioinformatics pipeline for copy number/zygosity assessment. SMARCB1-deficient SNC was found in 13 (59%) men and 9 (41%) women. Most common growth patterns were the basaloid pattern (59%), occurring mostly in men (77%), and plasmacytoid/eosinophilic/rhabdoid pattern (23%), arising mostly in women (80%). The former group was significantly younger (median age = 46 years, range = 24-54, vs 79 years, range = 66-95, p < 0.0001). Clear cell, pseudoglandular, glandular, spindle cell, and sarcomatoid features were variably present. SMARCB1-deficient SNC expressed cytokeratin (100%), p63 (72%), neuroendocrine markers (52%), CDX-2 (44%), S-100 (25%), CEA (4/4 cases), Hepatocyte (2/2 cases), and aberrant nuclear b-catenin (1/1 case). SMARCB1 showed homozygous deletion (68%), hemizygous deletion (16%), or truncating mutations associated with copy neutral loss of heterozygosity (11%). Coexisting genetic alterations were 22q loss including loss of NF2 and CHEK2 (50%), chromosome 7 gain (25%), and TP53 V157F, CDKN2A W110*, and CTNNB1 S45F mutations. At 2 years and 5 years, the disease-specific survival and disease-free survival were 70% and 35% and 13% and 0%, respectively. SMARCB1-deficient SNCs are phenotypically and genetically diverse, and these distinctions warrant further investigation for their biological and clinical signifi-cance. (C) 2020 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available