4.6 Article

LGR4 maintains HGSOC cell epithelial phenotype and stem-like traits

Journal

GYNECOLOGIC ONCOLOGY
Volume 159, Issue 3, Pages 839-849

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ygyno.2020.09.020

Keywords

ELF3; FZD5; LGR4; Ovarian cancer; WNT7B

Funding

  1. National Science Foundation Province [2019-MS-363, 2017225028]
  2. Department of Science and Technology of Liaoning province, China

Ask authors/readers for more resources

Objective. High-grade serous ovarian cancer (HGSOC) is lethal mainly due to extensive metastasis. Cancer cell stem-like properties are responsible for HGSOC metastasis. LGR4, a G-protein-coupled receptor, is involved in the maintenance of stem cell self-renewal and activity in some human organs. Methods. TCGA and CCLE databases were interrogated for gene mRNA in ovarian cancer tissues and cell lines. Gain and loss of functions of LGR4, ELF3, FZD5 and WNT7B were performed to identify their roles in ovarian cancer cell epithelial phenotype and stem-like properties. In vivo experiments were performed to observe the effect of LGR4 on ovarian cancer cell growth and peritoneal seeding. The binding of ELF3 to LGR4 gene promoter was investigated by dual-luciferase reporter assays and ChIP. Results. LGR4 was shown to be overexpressed in HGSOCs and maintain the epithelial phenotype of HGSOC cells. LGR4 knockdown suppressed POU5F1, SOX2, PROM1 (CD133) and ALDH1A2 expression. Furthermore, LGR4 knockdown reduced CD133(+) and ALDH(+) subpopulations and impaired tumorisphere formation. To the contrary, LGR4 overexpression enhanced POU5F1 and SOX2 expression and tumorisphere formation capacity. LGR4 knockdown inhibited HGSOC cell growth and peritoneal seeding in xenograft models. Mechanistically, LGR4 and ELF3, an epithelium-specific transcription factor, formed a reciprocal regulatory loop, which was positively modulated by WNT7B/FZD5 ligand-receptor pair. Consistently, knockdown of ELF3, WNT7B, and FZD5, respectively, disrupted HGSOC cell epithelial phenotype and stem-like properties. Conclusion. Together, these data demonstrate that WNT7B/FZD5-LGR4/ELF3 axis maintains HGSOC cell epithelial phenotype and stem-like traits; targeting this axis may prevent HGSOC metastasis. (C) 2020 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available