4.7 Article

Continuous Dissolved Gas Tracing of Fracture-Matrix Exchanges

Journal

GEOPHYSICAL RESEARCH LETTERS
Volume 47, Issue 17, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2020GL088944

Keywords

dissolved gas tracing; diffusion; chalk; double porosity; fractured rock; fracture-matrix interactions

Funding

  1. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant [722028]
  2. Belgian Fonds de la Recherche Scientifique - FNRS [J.0115.15]
  3. CRITEX project [ANR-11-EQPX-0011]

Ask authors/readers for more resources

Transport in fractured media plays an important role in a range of processes, from rock weathering and microbial processes to contaminant transport, and energy extraction and storage. Diffusive transfer between the fracture fluid and the rock matrix is often a key element in these applications. But the multiscale heterogeneity of fractures renders the field assessment of these processes extremely challenging. This study explores the use of dissolved gases as tracers of fracture-matrix interactions, which can be measured continuously and highly accurately using mobile mass spectrometers. Since their diffusion coefficients vary significantly, multiple gases are used to probe different scales of fracture-matrix exchanges. Tracer tests with helium, xenon, and argon were performed in a fractured chalk aquifer, and resulting tracer breakthrough curves are modeled. Results show that continuous dissolved gas tracing with multiple tracers provides key constrains on fracture-matrix interactions and reveal unexpected scale effects in fracture-matrix exchange rates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available