4.7 Article

Interaction type of tetrabromobisphenol A and copper manipulates ammonia-oxidizing archaea and bacteria communities in co-contaminated river sediments

Journal

ENVIRONMENTAL POLLUTION
Volume 264, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2020.114671

Keywords

Tetrabromobisphenol A; Copper; Ammonia-oxidizing microorganisms; Combined contamination; Interaction type

Funding

  1. National Natural Science Foundation of China [51779076]
  2. Water Conservancy Science and Technology Project of Jiangsu Province [2018030]
  3. Jiangsu Natural Science Foundation of China [BK20170883]
  4. Foundation of Innovative Research Groups of the National Natural Science Foundation of China [51421006]
  5. Fundamental Research Funds for the Central Universities
  6. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Ask authors/readers for more resources

The combined contamination of brominated flame retardants (BFRs) and heavy metals in electronic waste (e-waste) recycling and disposal areas has been a serious concern owing to their environmental persistence and chronic toxicities. Ammonia oxidizers, e.g., ammonia-oxidizing archaea (AOA) and bacteria (AOB) play essential roles in nitrogen cycling and can serve as ideal indicators that reflect the changes in sediment health in response to environmental variables. There is currently very little information available on the combined toxic effects of BERs and heavy metals on AOA and AOB communities. In this study, two typical e-waste pollutants, tetrabromobisphenol A (TBBPA) and copper (Cu), were selected as target contaminants to investigate the individual and combined effects of both pollutants on AOA and AOB communities in river sediments. Respective treatments of TBBPA (1, 10, and 20 mg/kg wet weight), Cu (100 mg/kg wet weight) and their combined treatments (weight ratios of 1:100, 1:10, and 1:5) were performed in laboratory experiments. High-throughput sequencing was applied to explore the response of ammonia oxidizers to TBBPA and Cu. The interaction types of TBBPA and Cu were calculated by the directional classification system to reveal the individual and combined toxicities of both contaminants to the ammonia oxidizers. On days 15 and 30, the dominant interaction type of TBBPA and Cu was synergistic (62.50%), and the combined contamination exacted selective pressure and inhibition on the AOB and AOA communities. On days 45 and 90, the interaction type shifted to be antagonistic (83.33%), with both the AOB and AOA communities gradually reaching stable population equilibria. The alteration of the interaction type is attributed to the elevated TBBPA/Cu tolerance as the incubation time increased. This study disclosed the interaction types of TBBPA and Cu in contaminated river sediments, and revealed that the combined effect could potentially manipulate AOB and AOA communities. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available