4.8 Article

Gut bacteria of the silkworm Bombyx mori facilitate host resistance against the toxic effects of organophosphate insecticides

Journal

ENVIRONMENT INTERNATIONAL
Volume 143, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2020.105886

Keywords

Insecticide; Resistance; Gut bacteria; Silkworm; Nutrients; Persistent organic pollutants (POPs)

Funding

  1. National Natural Science Foundation of China [31970483]
  2. China Agriculture Research System [CARS-18-ZJ0302]
  3. key laboratory of silkworm and bee resource utilization and innovation of Zhejiang Province [2020E10025]
  4. Max Planck Society, Germany

Ask authors/readers for more resources

Organophosphate insecticides that are heavily used in agriculture for pest control have caused growing environmental problems and public health concerns worldwide. Ironically, insecticide resistance develops quickly in major lepidopteran pests, partially via their microbial symbionts. To investigate the possible mechanisms by which the microbiota confers insecticide resistance to Lepidoptera, the model organism silkworm Bombyx mori (Lepidoptera: Bombycidae) was fed different antibiotics to induce gut dysbiosis (microbiota imbalance). Larvae treated with polymyxin showed a significantly lower survival rate when exposed to chlorpyrifos. Through highthroughput sequencing, we found that the abundances of Stenotrophomonas and Enterococcus spp. changed substantially after treatment. To assess the roles played by these two groups of bacteria in chlorpyrifos resistance, a germ-free (GF) silkworm rearing protocol was established to avoid the influence of natural microbiota and antibiotics. Monoassociation of GF silkworms with Stenotrophomonas enhanced host resistance to chlorpyrifos, but not in Enterococcus-fed larvae, consistent with larval detoxification activity. GC-mu ECD detection of chlorpyrifos residues in feces indicated that neither Stenotrophomonas nor Enterococcus degraded chlorpyrifos directly in the gut. However, gut metabolomics analysis revealed a highly species-specific pattern, with higher levels of essential amino acid produced in the gut of silkworm larvae monoassociated with Stenotrophomonas. This critical nutrient provisioning significantly increased host fitness and thereby allowed larvae to circumvent the deleterious effects of these toxic chemicals more efficiently. Altogether, our study not only suggests a new mechanism for insecticide resistance in notorious lepidopteran pests but also provides a useful template for investigating the interplay between host and gut bacteria in complex environmental systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available