4.7 Article

Cracking process and acoustic emission characteristics of sandstone with two parallel filled-flaws under biaxial compression

Journal

ENGINEERING FRACTURE MECHANICS
Volume 237, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfracmech.2020.107253

Keywords

Progressive failure; Micro-cracking; Biaxial compression; Digital image correlation; Acoustic emission

Categories

Funding

  1. National Natural Science Foundation of China [51674047, 51911530152]
  2. National Science Fund for Distinguished Young Scholars [51625401]
  3. National Key Research and Development Project [2018YFC0807805]
  4. Program for Changjiang Scholars and Innovative Research Team in University [IRT_17R112]

Ask authors/readers for more resources

Discontinuities widely exist in natural rocks. To investigate the progressive micro-cracking process and failure mechanism of fissured rocks, a series of biaxial compression tests were conducted on sandstone specimens containing two parallel filled flaws using acoustic emission (AE) analysis synchronized with digital image correlation (DIC) monitoring. Experimental results show that the peak strength and elastic modulus of sandstone decrease first and then increase with the change in the ligament angle from 0 degrees to 150% achieving a minimum at 60 degrees. The flaws remarkably facilitate crack coalescence under low lateral stress, such as at 2.5 MPa and 5 MPa. However, with an increase in lateral stress to 10 MPa, the crack coalescence is less influenced by the presence of pre-existing flaws. The AE events produced by flawed sandstone during the loading process conform to the Hurst statistical law. Fractal analysis shows that the lateral confinement reduces the irregularity of ultimate fracture geometry. Based on the AE dominant frequency features, the micro-tensile cracks, micro-shear cracks and micro-tensile-shear cracks are distinguished. The results show that with an increase in lateral stress, the percentage of micro-tensile cracks are constrained, but the number of micro-shear and mixed tensile-shear cracks increases. In addition, the micro-shear cracks preferentially appear in flawed sandstone specimens under high lateral stress as compared with specimens subjected to low stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Engineering, Geological

Discrete fracture matrix modelling of fully-coupled CO2 flow - Deformation processes in fractured coal

K. H. S. M. Sampath, M. S. A. Perera, D. Elsworth, S. K. Matthai, P. G. Ranjith, Li Dong-yin

Summary: CO2 interaction with coal causes complex mechanical deformations and flow modifications, affecting gas permeability in coal seams. The study shows that high-permeability fracture pathways provide easy access for CO2 diffusion into the coal matrix, leading to sorption-induced matrix swelling. The reduction in fracture aperture depends on the swelling behavior of the bounding matrix, causing full closure of small fractures and localized flow modifications.

INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES (2021)

Article Engineering, Geological

A Coupled X-Ray Imaging and Experimental Permeability Study of Propped Hydraulically Induced Fractures

K. M. A. S. Bandara, P. G. Ranjith, W. G. P. Kumari

Summary: The study revealed that fractures generated in shale and siltstone formations during hydraulic fracturing exhibit different characteristics, and flow behavior is influenced by factors such as fracture tortuosity and proppant concentration.

ROCK MECHANICS AND ROCK ENGINEERING (2022)

Article Engineering, Environmental

Experimental investigation on the nonlinear characteristics of energy evolution and failure characteristics of coal under different gas pressures

Yi Xue, Jia Liu, P. G. Ranjith, Zhizhen Zhang, Feng Gao, Songhe Wang

Summary: This study conducted triaxial compression tests on coal under different gas pressure conditions to explore the influence mechanism of gas pressure on coal deformation, failure, and energy evolution. The mechanical properties, acoustic emission energy characteristics, and nonlinear characteristics of coal containing gas were obtained based on the test data. A theoretical formula for analyzing energy evolution was introduced and verified by test data. The research results indicate that energy rate can be used as a new effective mechanical parameter to analyze and predict the damage and failure characteristics of coal. The findings on energy dissipation characteristics and the defined ratio of dissipative energy rate and input energy rate provide insights for understanding the fracturing evolution and energy driving mechanism of coal.

BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT (2022)

Article Construction & Building Technology

Properties of well cement following carbonated brine exposure under HTHP conditions: A comparative study of alkali-activated and class G cements

M. H. Samarakoon, P. G. Ranjith, W. A. M. Wanniarachchi

Summary: This study examines the effects of carbonation on the properties and mechanisms of cement, showing that alkali-activated cements with higher calcium content exhibit better mechanical properties and a denser microstructure when exposed to carbonate brine.

CEMENT & CONCRETE COMPOSITES (2022)

Article Thermodynamics

Investigation of the mechanical damage of low rank coals under the impacts of cyclical liquid CO2 for coalbed methane recovery

Jizhao Xu, Cheng Zhai, Pathegama Gamage Ranjith, Shuxun Sang, Yong Sun, Yuzhou Cong, Wei Tang, Yangfeng Zheng

Summary: The study investigated the effects of liquid CO2 on coal strength, finding that the coupled effects of liquid CO2 temperature and adsorption can influence coal fracture behavior and crack morphology.

ENERGY (2022)

Article Energy & Fuels

Mechanical responses of coals under the effects of cyclical liquid CO2 during coalbed methane recovery process

Jizhao Xu, Cheng Zhai, P. G. Ranjith, Shuxun Sang, Xu Yu, Yong Sun, Yuzhou Cong, Yangfeng Zheng, Wei Tang

Summary: The study found that coal affected by liquid CO2 exhibited more complex destruction patterns, larger fractal dimensions, and greater structure degradation. The affected coals showed diverse mechanical responses, with temperature shock and CO2 adsorption potentially leading to crack growth and strength deterioration, ultimately destroying the coal with smaller yield strength.
Article Energy & Fuels

The role of heterogeneity in gas production and the propagation of the dissociation front using thermal stimulation, and huff and puff in gas hydrate reservoirs

David Lall, Vikram Vishal, M. V. Lall, P. G. Ranjith

Summary: The study found that gas production was less efficient in the presence of a permeable heterogeneity compared to other scenarios. The permeability affects the vertical extent of dissolved methane volume during thermal stimulation and huff and puff, while well depth influences the radial extent of dissociated molecules.

JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING (2022)

Article Engineering, Geological

The Role of Pore Pressure on the Mechanical Behavior of Coal Under Undrained Cyclic Triaxial Loading

Chunlin Zhong, Zhenyu Zhang, P. G. Ranjith, Chengpeng Zhang, Kangsheng Xue

Summary: The study found that pore water can affect the radial and volumetric strain evolution of coal, leading to dilation deformation. Additionally, due to the water propping effect, the cracks in saturated coal cannot close tightly during loading, causing sliding and generating numerous tensile cracks. Loading frequency can impact the decay of pore pressure, consequently influencing the number of cracks in coal.

ROCK MECHANICS AND ROCK ENGINEERING (2022)

Article Energy & Fuels

Quantification of CO2 Replacement in Methane Gas Hydrates: A Molecular Dynamics Perspective

Shashika Gajanayake, Ranjith Pathegama Gamage, Pabasara Wanniarachchige, Decheng Zhang

Summary: This study conducted molecular dynamic simulations to investigate the effects of temperature, pressure, and initial CO2 concentration on gas replacement characteristics for methane recovery and CO2 storage. The results showed that higher temperatures resulted in greater methane recovery, but diminished CO2 storage capacity. Higher initial CO2 concentrations facilitated better CO2 penetration into the hydrate structure, leading to increased methane recovery and improved CO2 storage.

JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING (2022)

Article Thermodynamics

Experimental study of micromechanical properties alterations of shale matrix treated by ScCO2-Water saturation using nanoindentation tests

P. Cheng, C. P. Zhang, Z. Y. Ma, J. P. Zhou, D. C. Zhang, X. F. Liu, H. Chen, P. G. Ranjith

Summary: Nanoindentation tests were conducted to investigate the effects of ScCO2-water treatment on shale matrix micromechanics, revealing significant heterogeneity in the properties of different minerals. Observation of indentation morphologies showed that considerable micro-fractures were generated in clay minerals, correlated to significant plastic deformation and layered crystal structures.

ENERGY (2022)

Article Engineering, Geological

Grain-scale analysis of proppant crushing and embedment using calibrated discrete element models

K. M. A. S. Bandara, P. G. Ranjith, W. Zheng, D. D. Tannant, V. R. S. De Silva, T. D. Rathnaweera

Summary: This study provides a grain-scale analysis of the fracture evolution mechanisms of proppant crushing, rock fracture damage during proppant embedment, and the influence of realistic reservoir/fracture fluid on proppant embedment. The results reveal that the selection of an appropriate proppant type is vital in quantifying the degree of proppant crushing and embedment within fractures.

ACTA GEOTECHNICA (2022)

Article Thermodynamics

Direct evidence of CO2 softening effects on coal using nanoindentation

Guanglei Zhang, P. G. Ranjith, Qiao Lyu

Summary: This study reveals the effects of CO2 on the micro and nano-scale properties of coal, confirms the softening effects of CO2 on coal, and indicates that these changes are reversible to some extent.

ENERGY (2022)

Article Energy & Fuels

A clean and sustainable CO2 storage method in construction materials

B. Balinee, P. G. Ranjith, Herbert E. Huppert

Summary: The article discusses the impact of building material production on global carbon emissions and presents methods to reduce environmental impact through the use of waste and carbon sequestration. By incorporating discarded aluminum foil and industrial waste gases into cement, the performance and sustainability of cement can be improved. This approach significantly reduces carbon emissions, lowers costs, and stores a large amount of CO2.

GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES (2022)

Article Engineering, Geological

A Hybrid Approach to Rock Pre-conditioning Using Non-explosive Demolition Agents and Hydraulic Stimulation

V. R. S. De Silva, H. Konietzky, H. Mearten, P. G. Ranjith, W. G. P. Kumari

Summary: This study proposes a novel approach called the hybrid rock pre-conditioning method to enhance the sustainability and efficiency of low-grade ore mining. The method involves the use of soundless cracking demolition agents (SCDAs) to initiate radial fractures in a predrilled host rock, followed by hydraulic stimulation to extend the fractures. The results show that this method can create a high density of fractures around the injection well, and key factors such as rock mass heterogeneity and stress anisotropy affect its performance.

ROCK MECHANICS AND ROCK ENGINEERING (2023)

Article Energy & Fuels

Thermomechanical behaviour of well cement in different geological formations under the coupled effects of temperature and pressure

M. H. Samarakoon, P. G. Ranjith

Summary: Ensuring the intactness of cement sheaths is crucial for deep well applications in extreme underground conditions. This study investigates the behavior of wellbore materials, including steel casing, annulus cement sheaths, and surrounding rock formations, under continuous steam injection. The results show that materials in carbonate formations are more vulnerable to stress than those in sandstone formations, and the retention time of maximum temperature in cement sheaths is shorter in sandstone than in carbonate. It is also found that the cement sheaths in compliant formations like sandstone may fail due to tensile cracking along the thinnest thickness.

GEOENERGY SCIENCE AND ENGINEERING (2023)

Article Mechanics

Formation mechanism of zig-zag crack region on the shattered rim of railway wheel

Xiaolong Liu, Kelian Luo, Pengcheng Gao, Tao Cong, Xi Wang, Wenjing Wang

Summary: This paper investigates the formation mechanisms of the zig-zag crack region on the shattered rim of railway wheels. The zig-zag crack region, identified as a typical region for crack propagation in rolling contact fatigue behavior, was observed using scanning electron microscopy and transmission electron microscopy. The formation of the zig-zag morphology is attributed to the periodic deflection of the propagation path relative to the initial propagation plane, caused by the limited plastic deformation zone at the crack tip. Grain refinement and secondary cracks in the zig-zag crack region are a result of the large compressive and shear stresses induced by rolling contact loading.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

Structural, thermal and acoustic aspects of crack propagation in titanium alloys

Anastasia Iziumova, Aleksei Vshivkov, Ivan Panteleev, Virginia Mubassarova, Oleg Plekhov, Denis Davydov

Summary: The aim of this study was to investigate the correlation between structural, acoustic emission, and thermal characteristics of fatigue crack growth in titanium alloys. Cluster analysis of the acoustic emission signals revealed two different types of signals observed during the fatigue crack development. It was experimentally demonstrated that the stored energy tends to reach an asymptotic value at the final stage of fatigue crack growth and this is correlated with the twinning process intensification in titanium alloy Ti Grade 2. A correlation was assumed between the stages of change in heat flux, the cumulative energy of the first cluster of acoustic emission signals, and the crack length.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

On the solution of unstable fracture problems with non-linear cohesive laws

M. Vieira de Carvalho, I. A. Rodrigues Lopes, F. M. Andrade Pires

Summary: This study investigates the numerical challenges of fracture mechanics models within implicit quasi-static frameworks and proposes an instability criterion. The ratio of cohesive to internal power is identified as a crucial factor. Two strategies for handling fracture problems with instabilities are discussed and a comparative assessment is performed. The study also examines more complex material responses, including transformation-induced plasticity effects.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

Fracture parameter identification by Digital Image Correlation and Finite Fracture Mechanics for millimeter-scale samples

Thomas Duminy, Aurelien Doitrand, Sylvain Meille

Summary: This study conducted in situ wedge splitting tests on millimeter-size PMMA samples and proposed a method to determine the material tensile strength and critical energy release rate using digital image correlation and a full finite element implementation of the coupled criterion.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

Experimental investigation on mode I fracture characteristics of Longmaxi formation shale after cyclic thermal shock and high-temperature acid etching treatments

Xin Chang, Xingyi Wang, Chunhe Yang, Yintong Guo, Yanghui Wan

Summary: The influence of cyclic thermal shock and high-temperature acid etching on the Mode I fracture of shale was investigated in this study. It was found that cyclic thermal shock severely degrades the strength and fracture toughness of shale, while high-temperature acid etching treatment improves the fracture toughness. These findings are valuable for optimizing process parameters to reduce initiation pressure in deep shale formations.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

A proposal for similitude in characterizing fatigue delamination behavior with fibre bridging of carbon-fibre reinforced polymer composites

Liaojun Yao, Mingyue Chuai, Zhangming Lyu, Xiangming Chen, Licheng Guo, R. C. Alderliesten

Summary: Methods based on fracture mechanics have been widely used in fatigue delamination growth (FDG) characterization of composite laminates. This study proposes appropriate similitude parameters to represent FDG behavior with different R-ratios.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

Experimental investigation of the fracture and damage evolution characteristics of flawed coal based on electric potential and acoustic emission parameter analyses

Zesheng Zang, Zhonghui Li, Yue Niu, Shan Yin

Summary: This study conducted experiments and recorded signals to investigate the fracture behavior and damage evolution characteristics of coal samples. The results showed that as loading proceeds, the stress, electric potential (EP), and acoustic emission (AE) values increase, and EP and AE signals are excited when stress drops. The fracture behavior of coal samples is altered by flaw inclination, and the destruction mode becomes increasingly complicated. The damage evolution characteristics of coal samples can be evaluated and analyzed by defining the coefficient of variation (CV value) of EP and the b value of AE.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

Mechanical strength of different zirconia thin films in relation with their thickness

Clotilde Berdin, Nathalie Prud'homme

Summary: In this study, zirconia layers with different fractions of tetragonal phase and thicknesses were tested for multi-cracking behavior. Cracks perpendicular to the tensile direction were observed, showing a blunting effect into the substrate. The ratio of crack spacing at saturation to layer thickness decreased as the layer thickness increased. Unit cell modeling was used to establish a relationship between crack spacing and layer strength, which fell within the bounds of Hu and Evans model and was found to be insensitive to the tetragonal zirconia fraction.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

Modified Williams' crack tip solution including crack face pressure

Huadong Zhang, Weichen Kong, Y. H. Liu, Yuh J. Chao

Summary: Williams' series expansion crack tip solution in linear elasticity is modified to include a uniform crack face pressure. Practical methods to calculate T-stress from near crack tip stresses are outlined. The analytical results are consistent with numerical results.

ENGINEERING FRACTURE MECHANICS (2024)

Article Mechanics

Phase field study on fracture behavior of crushable polymer foam

Jiahao Kong, Haoyue Han, Tao Wang, Guangyan Huang, Zhuo Zhuang

Summary: This paper introduces a phase-field model for polymer foam materials by combining the phase-field method with the crushable foam model. The model is calibrated using experimental data and successfully simulates the fracture processes of polyurethane under different loading conditions. The study is important for the engineering applications of polymer foam materials.

ENGINEERING FRACTURE MECHANICS (2024)