4.7 Article

A comparative life cycle assessment (LCA) of different insulation materials for buildings in the continental Mediterranean climate

Journal

ENERGY AND BUILDINGS
Volume 225, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2020.110323

Keywords

Insulation materials; Life cycle assessment (LCA); Environmental impact; ReCiPe; GWP; Thermal performance

Funding

  1. Ministerio de Ciencia, Innovacion y Universidades de Espana (MCIU/AEI/FEDER, UE) [RTI2018-093849-B-C31]
  2. Ministerio de Ciencia, Innovacion y Universidades - Agencia Estatal de Investigacion (AEI) [RED2018-102431-T]
  3. ICREA under the ICREA Academia programme

Ask authors/readers for more resources

The construction industry is one of the less sustainable activities on the planet, constituting 40% of the total energy demand and approximately 44% of the total material use and the generation of 40-50% of the global output of greenhouse gases. The biggest environmental impact caused by buildings is generated during their operational phase due to the energy consumption for thermal conditioning. Hence, in order to reduce this energy consumption, insulation materials must be used and from a life-cycle perspective, the use of insulation materials reduces the building impact over time. This paper develops a comparative life cycle assessment (LCA) of different insulation materials (polyurethane, extruded polystyrene, and mineral wool) to analyse the environmental profile of each insulation material type in the Mediterranean continental climate. Significantly, all three insulation materials demonstrated a net positive benefit over a fifty-year life span due to the reduced heating requirements of the building. Results showed that the highest environmental impact was associated with the polystyrene insulation material and the best environmental performance was for the mineral wool. Moreover, regarding the consumption, polyurethane and mineral wool had similar thermal performance during the whole year. Furthermore, the environmental payback period shows that the cubicles with insulation material are environmentally efficient, if they are used for at least 7 years (for mineral wool), 10 years (polyurethane), and 12 years (extruded polystyrene). The results of this research give new insights into the effect on building insulation materials. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available