4.7 Article

From scheelite BaMoO4 to perovskite BaMoO3: Enhanced electrocatalysis toward the hydrogen evolution in alkaline media

Journal

COMPOSITES PART B-ENGINEERING
Volume 198, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2020.108214

Keywords

Hydrogen evolution reaction; Metallic BaMoO3; Perovskite; Phase transformation; Scheelite; Water splitting

Funding

  1. Australian Research Council (ARC) [DP150104365, DP160104835, LE120100026, LE0775551]
  2. John de Laeter Centre, Curtin University [ARC LE120100026, ARC LE0775551]
  3. Australian Government Research Training Program Scholarship
  4. Australian Research Council [LE120100026] Funding Source: Australian Research Council

Ask authors/readers for more resources

The discovery of new, inexpensive, and efficient electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solutions holds key to the realization of clean hydrogen production through water electrolysis. While molybdenum (Mo)-based inorganic compounds have been extensively investigated as catalyst candidates toward the alkaline HER, Mo-based oxides, in particular, complex oxides, are rarely explored. Here we report a Mo-containing, metallic BaMoO3 perovskite, which is derived from a scheelite-type, insulating BaMoO4 oxide through a thermal reduction-induced phase transformation, as a potential electrocatalyst for driving the alkaline HER. The BaMoO3 perovskite made of interconnected MoO6 octahedra is found to be more HER-active than the BaMoO4 scheelite consisting of isolated MoO4 tetrahedra, showing a significant increase in intrinsic activity by about one order of magnitude, which is due to the stabilized Mo tetravalent state, the increased surface oxygen vacancy concentration, and the improved electrical conductivity of BaMoO3. Importantly, BaMoO3 exhibits a smaller overpotential to deliver a geometric current density of -10 mA cm(geo)(-2) when compared with many of the bulk-sized perovskite catalysts comprising other transition metals (e.g., Mn, Fe, Co, and Ni) and the intensively studied Mo-based catalysts (e.g., MoS2), making it highly promising as an alternative electrocatalyst for the alkaline HER.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available