4.7 Article

An efficient and durable perovskite electrocatalyst for oxygen reduction in solid oxide fuel cells

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 396, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.125237

Keywords

Solid oxide fuel cells; Cathode; Oxygen reduction reaction; Perovskite; CO2 tolerance

Funding

  1. One-Hundred Young Talents Program of Guangdong University of Technology, China [220413180]
  2. Foundation for Youth Innovative Talents in Higher Education of Guangdong Province, China [2018KQNCX060]
  3. Joint Funds of Basic and Applied Basic Research Foundation of Guangdong Province, China [2019A1515110322]
  4. Research Grant Council, University Grants Committee, Hong Kong SAR, China [PolyU 152064/18E]
  5. Research Incentive Performance Program of Chongqing Science and Technology Bureau, China [cstc2018jszx-zdyfxmX0016]

Ask authors/readers for more resources

Achieving superior electrocatalytic activity and thermal/chemical stability of cathode materials is the key to high-performance and durable solid oxide fuel cells (SOFC). Here, we present a barium and praseodymium co-substituted perovskite Bi0.7Pr0.1Ba0.2FeO3-delta (BPBF), a cubic-symmetry oxide phase, as a candidate cathode material for SOFC, with a focus on its crystalline structure, oxygen transport, electrocatalytic activity, as well as structural and chemical stability. The BPBF-based cathode delivers superior electroactivity, with a polarization area-specific-resistance as low as 0.056 Omega cm(2) at 700 degrees C in symmetrical cells. Surprisingly, when exposed to both air and 1 vol% CO2-containing air at 600 degrees C for 100 h, the electrode activity remains constant. The prominent thermal and chemical (CO2 tolerance) stability can be ascribed to co-substitution of barium and praseodymium and high acidity of bismuth ions. Endowed with favorable electrocatalytic activity and excellent durability, the BPBF-based material can be a promising cathode to facilitate commercialization of SOFC technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Environmental Sciences

Gestational exposure to perfluoroalkyl substances is associated with placental DNA methylation and birth size

Hexing Wang, Wenyun Li, Jiaqi Yang, Yuanping Wang, Hongyi Du, Minghui Han, Linji Xu, Shuping Liu, Jianping Yi, Yue Chen, Qingwu Jiang, Gengsheng He

Summary: This study investigated the effects of gestational exposure to PFASs on fetal growth by examining DNA methylation in placenta tissue of pregnant women. The results showed that PFOS was negatively associated with LINE-1 methylation, and the mixture of PFASs was negatively associated with LINE-1 methylation and NR3C1 methylation. PFOA, PFNA, PFDA, and the PFASs mixture were negatively associated with head circumference. Stratified analysis by newborns' sex found that PFOA, PFNA, and the PFASs mixture were negatively associated with LINE-1 methylation in males, and LINE-1 methylation was negatively associated with ponderal index in females. Interactions between newborns' sex and PFOS/PFOA on IGF2 and LINE-1 methylation were statistically significant. These findings suggest that intrauterine exposure to PFASs affects placental DNA methylation and reduces fetal growth, which may be modified by sex.

SCIENCE OF THE TOTAL ENVIRONMENT (2023)

Article Energy & Fuels

Large-scale three-dimensional simulation of proton exchange membrane fuel cell considering detailed water transition mechanism

Biao Xie, Hanyang Zhang, Wenming Huo, Renfang Wang, Ying Zhu, Lizhen Wu, Guobin Zhang, Meng Ni, Kui Jiao

Summary: Gaining a deeper and clearer understanding of the transport mechanism in proton exchange membrane (PEM) fuel cells is crucial for their commercialization. This study investigates the water transition mechanism in the catalyst layer of PEM fuel cells from a macro-scale performance model perspective. Various operating conditions and water transition mechanisms are analyzed, and a self-adaptive mechanism is proposed and validated. The results show that the proposed method has good adaptability and fidelity for multi-condition simulation, which is an urgent requirement for PEM fuel cell research and development.

APPLIED ENERGY (2023)

Article Thermodynamics

A numerical study on the battery thermal management system with mini-channel cold plate considering battery aging effect

Zengjia Guo, Qidong Xu, Meng Ni

Summary: Battery aging significantly affects the thermal characteristics and electrochemical performance of electric vehicle batteries. This research develops a realistic and generic model for the design of battery thermal management systems (BTMS) to ensure efficient and durable operation of batteries. The study shows that BTMS provides effective cooling to batteries in their initial working cycles but fails to control the battery temperature after aging. Furthermore, BTMS with Y direction mini-channels provides more effective cooling and achieves good electrochemical performance.

APPLIED THERMAL ENGINEERING (2023)

Review Engineering, Environmental

Morphology control and electronic tailoring of CoxAy (A = P, S, Se) electrocatalysts for water splitting

Jie Yu, Zheng Li, Tong Liu, Siyuan Zhao, Daqin Guan, Daifen Chen, Zongping Shao, Meng Ni

Summary: This article summarizes recent efforts and progress in regulating the electronic and morphological structures of CoxAy (A = P, S, Se)-based materials for the optimization of their catalytic performance. Methods such as phase control, defect engineering, nanostructure construction, heteroatom doping, and composite engineering are introduced to optimize the electronic configurations, increase active sites, and enhance the conductivity, etc. Furthermore, the underlying activity-structure relationships behind the boosted catalytic behavior of these materials are discussed in detail. Lastly, a perspective on the future exploration of CoxAy (A = P, S, Se)-based electrocatalysts is presented. This review provides valuable insights into the investigation of emerging materials in energy chemistry.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Thermodynamics

Battery thermal management system with heat pipe considering battery aging effect

Zengjia Guo, Qidong Xu, Yang Wang, Tianshou Zhao, Meng Ni

Summary: This paper develops a realistic and generic model combining electrochemical reactions, capacity decay, and heat transfer for the design of battery thermal management system (BTMS). The multiphysics behaviors of HP-BTMS and MHP-BTMS under different working cycles are analyzed and compared. It is found that HP-BTMS and MHP-BTMS can provide good thermal management for batteries for only several working cycles. The optimized MHP-BTMS with X direction MHP, non-equidistant arrangements, and cold plates effectively controls the battery temperature even after 1250 cycles, preventing SEI formation and capacity decay.

ENERGY (2023)

Article Thermodynamics

Protonic ceramic fuel cells for power-ethylene cogeneration: A modelling study on structural parameters

Zheng Li, Qijiao He, Chen Wang, Na Yu, Idris Temitope Bello, Meiting Guo, Meng Ni

Summary: Protonic ceramic fuel cells (PCFCs) were studied to investigate the effects of structural parameters on cogeneration performance. Increasing cell length and electrochemical reaction section (ERS) enhance the ethylene yield. The highest ethylene yield of 44% was obtained in a 10 cm PCFC at 973 K. By decreasing the ERS ratio, the current density can be enhanced up to 14% and reaches the highest value of 2235 A m(-2) in an 8 cm PCFC with a 30% ERS ratio. This model provides insights into the relationship between structural parameters and cogeneration performance in PCFC and can be applied to other hydrocarbon fuels.

ENERGY (2023)

Article Engineering, Environmental

CO2-induced reconstruction for ORR-enhanced solid oxide fuel cell cathode

Yuan Zhang, Junbiao Li, Heping Xie, Zhipeng Liu, Suling Shen, Ying Teng, Daqin Guan, Shuo Zhai, Yufei Song, Wei Zhou, Bin Chen, Meng Ni, Zongping Shao

Summary: By utilizing a CO2-induced reconstruction strategy, a BaCO3 shell with both oxygen incorporative and robust properties was successfully built on a self-assembled composite cathode made of BaFeO3-delta perovskite. The resulting cathode exhibited enhanced ORR activity, durability, and thermomechanical compatibility.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Construction & Building Technology

The impact of neighborhood layout heterogeneity on carbon emissions in high-density urban areas: A case study of new development areas in Hong Kong

Ping He, Jin Xue, Geoffrey Qiping Shen, Meng Ni, Shengwei Wang, Han Wang, Lijie Huang

Summary: Under the context of climate change, there is a call for a paradigm shift towards environmentally sensitive urban design. This study examines the impact of neighborhood layout heterogeneity on carbon emissions, considering five indicators and different renewable energy application ratios. Through multiple linear regression analysis, it is found that building density and shape heterogeneity significantly influence neighborhood carbon emissions. The heterogeneity of building height hinders carbon reduction efforts, while the heterogeneity of building shape improves carbon reduction through facade solar energy collection. However, there is a trade-off in decision-making when designing low-carbon neighborhoods due to the opposite effects of layout heterogeneity on solar energy collection and building energy consumption.

ENERGY AND BUILDINGS (2023)

Article Thermodynamics

Efficiency analysis and operating condition optimization of solid oxide electrolysis system coupled with different external heat sources

Tonghui Cui, Jianzhong Zhu, Zewei Lyu, Han Minfang, Kaihua Sun, Yang Liu, Meng Ni

Summary: Coupling external heat sources effectively reduces energy consumption and improves the efficiency of the solid oxide electrolysis (SOEC) system. Three coupling scenarios are defined based on the internal heat demand and the temperature of external heat sources. The study analyzes the influence of critical parameters on system efficiency and provides insights for selecting optimal working conditions and guiding online control during system operation.

ENERGY CONVERSION AND MANAGEMENT (2023)

Article Chemistry, Physical

Calcium-ion thermal charging cell for advanced energy conversion and storage

Zongmin Hu, Sheng Chang, Chun Cheng, Chen Sun, Jingrui Liu, Tingting Meng, Yimin Xuan, Meng Ni

Summary: Converting low-grade heat into electricity contributes to sustainability by improving energy efficiency and reducing thermal pollution. A new calcium-ion thermal charging cell (CTCC) with ultrahigh thermopower of 25.2 mV K-1 has been proposed by introducing the concept of calcium-ion batteries into a thermoelectric system. This work enriches the multivalent-ionbased thermocell classes for efficient heat-to-electricity conversion in sustainable energy utilization.

ENERGY STORAGE MATERIALS (2023)

Review Chemistry, Physical

Metal Oxide-Supported Metal Catalysts for Electrocatalytic Oxygen Reduction Reaction: Characterization Methods, Modulation Strategies, and Recent Progress

Siyuan Wang, Miao Wang, Yunze Zhang, Hongsheng Wang, Hao Fei, Ruoqi Liu, Hui Kong, Ruijie Gao, Siyuan Zhao, Tong Liu, Yuhao Wang, Meng Ni, Francesco Ciucci, Jian Wang

Summary: The sluggish kinetics of the oxygen reduction reaction (ORR) limits the large-scale application of electrochemical energy devices. Metal oxide-supported metal catalysts (MOSMCs) are gaining interest due to their unique electronic configuration and corrosion resistance. MOSMCs can be modulated by engineering the metal oxide substrate and supported metal. This review comprehensively discusses the characterization, modulation strategies, and status of MOSMCs for ORR, and promotes rational design for electrochemical energy devices.

SMALL METHODS (2023)

Article Engineering, Environmental

Revolutionizing material design for protonic ceramic fuel cells: Bridging the limitations of conventional experimental screening and machine learning methods

Idris Temitope Bello, Daqin Guan, Na Yu, Zheng Li, Yufei Song, Xi Chen, Siyuan Zhao, Qijiao He, Zongping Shao, Meng Ni

Summary: This study proposes an approach based on the experimental design paradigm (EDP) to efficiently facilitate the development of cathode materials for protonic ceramic fuel cells (PCFCs). By employing a systematic statistical method, empirical models are generated to reveal the optimal composition and performance characteristics. The feasibility and practicality of the approach are demonstrated through experiments on two cathode materials. The EDP offers a reliable and practical alternative to conventional trial-and-error screening and machine learning methods for designing superior materials for solid-state electrochemical power generation systems.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Environmental

High-Power-Density and High-Energy-Efficiency Zinc-Air Flow Battery System for Long-Duration Energy Storage

Siyuan Zhao, Tong Liu, Yayu Zuo, Manhui Wei, Jian Wang, Zongping Shao, Dennis Y. C. Leung, Tianshou Zhao, Meng Ni

Summary: To achieve long-duration energy storage, a technological and economical battery technology is crucial. This study presents an all-around zinc-air flow battery that utilizes a decoupled acid-alkaline electrolyte to elevate the discharge voltage and a reaction modifier KI to lower the charging voltage. This battery exhibits long discharge duration, high power density, unprecedented energy efficiency, and outstanding fast charging ability, making it a promising option for long-duration energy storage and a catalyst for the development of other systems.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Thermodynamics

A 3D modelling study on all vanadium redox flow battery at various operating temperatures

Qijiao He, Zheng Li, Dongqi Zhao, Jie Yu, Peng Tan, Meiting Guo, Tianjun Liao, Tianshou Zhao, Meng Ni

Summary: A 3D numerical model was developed to study the impact of practical operating temperature on the performance of vanadium redox flow batteries (VRFBs). The results showed that the operating temperature significantly influenced the optimal design of VRFBs. Increasing the inlet flow rate and state of charge, decreasing the electrode porosity and fiber diameter all improved battery performance, with the improvement being more pronounced at higher temperatures.

ENERGY (2023)

Article Environmental Sciences

The modified properties of sludge-based biochar with ferric sulfate and its effectiveness in promoting carbon release from particulate organic matter in rural household wastewater

Linji Xu, Lin Li, Wei Lu, Yilu Gu, Huichuan Zhuang, Qiang He, Lei Zhu

Summary: This study presents an innovative approach to address the scarcity of carbon sources in the bio-treatment of rural domestic wastewater. The ferric sulfate modified sludge-based biochar (SBC) was found to enhance the degradation of particulate organic matter (POM) by providing active sites and functional groups. The findings suggest that ferric sulfate modified SBC holds potential for carbon degradation in rural domestic wastewater.

ENVIRONMENTAL RESEARCH (2023)

Article Engineering, Environmental

A metal-phenolic network-assembled nanotrigger evokes lethal ferroptosis via self-supply loop-based cytotoxic reactions

Xinping Zhang, Yuxin Guo, Xiaoyang Liu, Shun-Yu Wu, Ya-Xuan Zhu, Shao-Zhe Wang, Qiu-Yi Duan, Ke-Fei Xu, Zi-Heng Li, Xiao-Yu Zhu, Guang-Yu Pan, Fu-Gen Wu

Summary: This study develops a nanotrigger HCFT for simultaneous photodynamic therapy and light-triggered ferroptosis therapy. The nanotrigger can relieve tumor hypoxia, induce enhanced photodynamic reaction, and facilitate the continuation of Fenton reaction, ultimately leading to lethal ferroptosis in tumor cells.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

XAS and DFT investigation of atomically dispersed Cu/Co alloyed Pt local structures under selective hydrogenation of acetylene to ethylene

Olumide Bolarinwa Ayodele, Toyin Daniel Shittu, Olayinka S. Togunwa, Dan Yu, Zhen-Yu Tian

Summary: This study focused on the semihydrogenation of acetylene in an ethylene-rich stream using two alloyed Pt catalysts PtCu and PtCo. The PtCu catalyst showed higher activity and ethylene yield compared to PtCo due to its higher unoccupied Pt d-orbital density. This indicates that alloying Pt with Cu is more promising for industrial relevant SHA catalyst.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A multifunctional emitter with synergistical adjustment of rigidity and flexibility for high-performance data-recording and organic light-emitting devices with hot exciton channel

Guowei Chen, Wen-Cheng Chen, Yaozu Su, Ruicheng Wang, Jia-Ming Jin, Hui Liang, Bingxue Tan, Dehua Hu, Shaomin Ji, Hao-Li Zhang, Yanping Huo, Yuguang Ma

Summary: This study proposes an intramolecular dual-locking design for organic luminescent materials, achieving high luminescence efficiency and performance for deep-blue organic light-emitting diodes. The material also exhibits unique mechanochromic luminescence behavior and strong fatigue resistance.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Cobalt/nickel purification by solvent extraction with ionic liquids in millifluidic reactors: From single-channel to numbered-up configuration with solvent recycle

Joren van Stee, Gregory Hermans, Jinu Joseph John, Koen Binnemans, Tom Van Gerven

Summary: This work presents a continuous solvent extraction method for the separation of cobalt and nickel in a millifluidic system using Cyphos IL 101 (C101) as the extractant. The optimal conditions for extraction performance and solvent properties were determined by investigating the effects of channel length, flow rate, and temperature. The performance of a developed manifold structure was compared to a single-channel system, and excellent separation results were achieved. The continuous separation process using the manifold structure resulted in high purity cobalt and nickel products.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Environment-triggered nanoagent with programmed gas release performance for accelerating diabetic infected wound healing

Yan Xu, Jingai Jiang, Xinyi Lv, Hui Li, Dongliang Yang, Wenjun Wang, Yanling Hu, Longcai Liu, Xiaochen Dong, Yu Cai

Summary: A programmed gas release nanoparticle was developed to address the challenges in treating diabetic infected wounds. It effectively removes drug-resistant pathogens and remodels the wound microenvironment using NO and H2S. The nanoparticle can eliminate bacteria and promote wound healing through antibacterial and anti-inflammatory effects.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Synergistic dopa-reinforced fluid hydrosol as highly efficient coal dust suppressant

Tong Xia, Zhilin Xi, Lianquan Suo, Chen Wang

Summary: This study investigated a highly efficient coal dust suppressant with low initial viscosity and high adhesion-solidification properties. The results demonstrated that the dust suppressant formed a network of multiple hydrogen bonding cross-linking and achieved effective adhesion and solidification of coal dust through various chemical reactions.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

First principle-based rate equation theory for the carbonation kinetics of CaO with CO2 in calcium looping

Jinzhi Cai, Zhenshan Li

Summary: A density functional theory-based rate equation was developed to predict the gas-solid reaction kinetics of CaO carbonation with CO2 in calcium looping. The negative activation energy of CaO carbonation close to equilibrium was accurately predicted through experimental validation.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Significant enhancement of high-temperature capacitive energy storage in dielectric films through surface self-assembly of BNNS coatings

Jianxiong Chen, Fuhao Ren, Ningning Yin, Jie Mao

Summary: This study presents an economically efficient and easily implementable surface modification approach to enhance the high-temperature electrical insulation and energy storage performance of polymer dielectrics. The self-assembly of high-insulation-performance boron nitride nanosheets (BNNS) on the film surface through electrostatic interactions effectively impedes charge injection from electrodes while promoting charge dissipation and heat transfer.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Medium entropy metal oxide induced *OH species targeted transfer strategy for efficient polyethylene terephthalate plastic recycling

Zijian Li, Zhaohui Yang, Shao Wang, Hongxia Luo, Zhimin Xue, Zhenghui Liu, Tiancheng Mu

Summary: This study reports a strategy for upgrading polyester plastics into value-added chemicals using electrocatalytic methods. By inducing the targeted transfer of *OH species, polyethylene terephthalate was successfully upgraded into potassium diformate with high purity. This work not only develops an excellent electrocatalyst, but also provides guidance for the design of medium entropy metal oxides.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A novel environmental friendly and sustainable process for textile dyeing with sulphur dyes for cleaner production

Navneet Singh Shekhawat, Surendra Kumar Patra, Ashok Kumar Patra, Bamaprasad Bag

Summary: This study primarily focuses on developing a sulphur dyeing process at room temperature using bacterial Lysate, which is environmentally friendly, energy and cost effective, and sustainable. The process shows promising improvements in dye uptake and fastness properties.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Highly efficient and sustainable cationic polyvinyl chloride nanofibrous membranes for removal of E. coli and Cr (VI): Filtration and adsorption

Dengjia Shen, Hongyang Ma, Madani Khan, Benjamin S. Hsiao

Summary: This study developed cationic PVC nanofibrous membranes with high filtration and adsorption capability for the removal of bacteria and hexavalent chromium ions from wastewater. The membranes demonstrated remarkable performance in terms of filtration efficiency and maximum adsorption capacity. Additionally, modified nanofibrous membranes were produced using recycled materials and showed excellent retention rates in dynamic adsorption processes.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Concerted proton-coupled electron transfer promotes NiCoP nanowire arrays for efficient overall water splitting at industrial-level current density

Xiaoyan Wang, Zhikun Wang, Ben Jia, Chunling Li, Shuangqing Sun, Songqing Hu

Summary: Inspired by photosystem II, self-supported Fe-doped NiCoP nanowire arrays modified with carboxylate were constructed to boost industrial-level overall water splitting by employing the concerted proton-coupled electron transfer mechanism. The introduction of Fe and carboxyl ligand led to improved catalytic activity for HER and OER, and NCFCP@NF exhibited long-term durability for overall water splitting.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Self-limiting growth of thin dense LTA membranes boosts H2 gas separation performance

Pengyao Yu, Ge Yang, Yongming Chai, Lubomira Tosheva, Chunzheng Wang, Heqing Jiang, Chenguang Liu, Hailing Guo

Summary: Thin LTA zeolite membranes were prepared through secondary growth of nano LTA seeds in a highly reactive gel, resulting in membranes with superior permeability and selectivity in gas separation applications.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Prediction of phosphate adsorption amount, capacity and kinetics via machine learning: A generally physical-based process and proposed strategy of using descriptive text messages to enrich datasets

Baiqin Zhou, Huiping Li, Ziyu Wang, Hui Huang, Yujun Wang, Ruichun Yang, Ranran Huo, Xiaoyan Xu, Ting Zhou, Xiaochen Dong

Summary: The use of machine learning to predict the performance of specific adsorbents in phosphate adsorption shows great promise in saving time and revealing underlying mechanisms. However, the small size of the dataset and insufficient detailed information limits the model training process and the accuracy of results. To address this, the study employs a fuzzing strategy that replaces detailed numeric information with descriptive text messages on the physiochemical properties of adsorbents. This strategy allows the recovery of discarded samples with limited information, leading to accurate prediction of adsorption amount, capacity, and kinetics. The study also finds that phosphate uptake by adsorbents is generally through physisorption, with some involvement of chemisorption. The framework established in this study provides a practical approach for quickly predicting phosphate adsorption performance in urgent scenarios, using easily accessible information.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Absorption of hydrophobic volatile organic compounds in renewable vegetable oils and esterified fatty acids: Determination of gas-liquid partitioning coefficients as a function of temperature

Paula Alejandra Lamprea Pineda, Joren Bruneel, Kristof Demeestere, Lisa Deraedt, Tex Goetschalckx, Herman Van Langenhove, Christophe Walgraeve

Summary: This study evaluates the use of four esterified fatty acids and three vegetable oils as absorption liquids for hydrophobic VOCs. The experimental results show that isopropyl myristate is the most efficient liquid for absorbing the target VOCs.

CHEMICAL ENGINEERING JOURNAL (2024)