4.6 Article

Soft tissue variations influence HR-pQCT density measurements in a spatially dependent manner

Journal

BONE
Volume 138, Issue -, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2020.115505

Keywords

Bone mineral density; HR-pQCT; Obesity; Beam-hardening; Scatter; Bariatric surgery; Weight loss

Funding

  1. National Institutes of Health (NIH) [NIH/NIAMS R01AR069670, NIH/NIDDK R01DK107629]
  2. Department of Veterans Affairs [5IK2CX000549]

Ask authors/readers for more resources

Objective: Significant weight loss following treatments for obesity undermines bone metabolism and increases bone turnover and fracture incidence. High resolution peripheral quantitative computed tomography (HR-pQCT) is widely used in skeletal heath assessment research to provide noninvasive bone parameter measurement (e.g. volumetric bone mineral density (vBMD)) with minimal radiation exposure. However, variation in body composition among study groups or longitudinal variations within individuals undergoing significant weight change will generate artifacts and errors in HR-pQCT data. The purpose of this study is to determine the influence of these artifacts on the measurement of vBMD. Methods: We designed a custom-made hydroxyapatite (HA)-polymer phantom surrounded by layers of reusable gel pack and hydrogenated fat to mimic the distal tibia and the surrounding lean and fat tissue. Four different thicknesses of fat were used to mimic the soft tissue of increasingly overweight individuals. We then evaluated how a change in soft tissue thickness influenced image quality and vBMD quantification within total, trabecular, and cortical bone compartments. Based on these data, we applied a data correction to previously acquired clinical data in a cohort of gastric bypass patients. Results: In the phantom measurements, total, trabecular, and cortical vBMD increased as soft tissue thickness decreased. The impact of soft tissue thickness on vBMD varied by anatomic quadrant. When applying the soft tissue data correction to a set of clinical data, we found that soft tissue reduction following bariatric surgery can lead to a clinically significant underestimation of bone loss in longitudinal data, and that the effect is most severe in the cortical compartment. Conclusion: HR-pQCT-based vBMD measurement accuracy is influenced by soft tissue thickness and is spatially inhomogeneous. Our results suggest that variations in soft tissue thickness must be considered in HR-pQCT studies, particularly in studies enrolling cohorts with differing body composition or in studies of longitudinal weight change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available