4.7 Article

Pitch coating of SiC and its effects on the thermal stability and oxidation resistance of SiC/epoxy composites

Journal

COMPOSITES PART B-ENGINEERING
Volume 94, Issue -, Pages 218-223

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2016.03.051

Keywords

Thermoplastic resin; Interface; Surface properties; Thermal properties

Funding

  1. Carbon Valley Project of the Ministry of Trade, Industry and Energy, South Korea

Ask authors/readers for more resources

The effects of surface treatment and carbonized pitch (CP) coating on the silicon carbide (SiC) in a SiC epoxy composite were investigated in this study, with a focus on the thermal stability and oxidation resistance of the composites. The thermal stability and oxidation resistance properties of the composites were affected by this CP coating. The SiC pitch coating improved the thermal stability and oxidation resistance of the epoxy composite, and the CP coated-SiC filler improved the thermal stability of the epoxy composites over that of the pure SiC filler. In addition, the surface treatment increased the thermal stability and oxidation resistance due to the interaction at the surface between the SiC and the CP. CP-coated acidic surface treated-SiC (CP/aSiC) composites featured improved oxidation resistance and thermal stability compared to the CP coated-SiC (CP/SiC) composites. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Polymer Science

Improved thermal conductivity of epoxy resins using silane coupling agent-modified expanded graphite

Di Jiang, Na Chu, Yue Zhang, Wei-Dong Wang, Fan-Long Jin, Soo-Jin Park

Summary: A silane coupling agent was used to modify the surface of expanded graphite, which was subsequently used as a thermally conductive filler to fabricate DGEBA/EG composites with high thermal conductivity. The addition of Si@EG significantly improved the thermal conductivity of the composites, but decreased the impact strength.

JOURNAL OF APPLIED POLYMER SCIENCE (2023)

Article Chemistry, Physical

Bimetallic CuPd alloy nanoparticles decorated ZnO nanosheets with enhanced photocatalytic degradation of methyl orange dye

Hao Sun, Seul-Yi Lee, Soo-Jin Park

Summary: Photocatalytic technology is a promising alternative for water treatments, but its practical application is limited by low efficiency and selectivity. In this study, two-dimensional zinc oxide nanosheets decorated with copper-palladium bimetallic nanoparticles were synthesized for the degradation of organic dyes in water. The prepared composites showed superior photocatalytic performance compared to pristine ZnO nanosheets under visible-light irradiation, attributed to enhanced separation and transfer efficiency of charge carriers. The highest catalytic efficiency was achieved by CuPd/ZnO nanocomposite with 0.5 wt% CuPd, achieving 95.3% removal of methyl orange within 45 minutes. This study provides a new avenue for the design and fabrication of high-performance photocatalysts for water treatments.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2023)

Article Multidisciplinary Sciences

Progressing of a power model for electrical conductivity of graphene-based composites

Yasser Zare, Kyong Yop Rhee, Soo-Jin Park

Summary: This study presents a power equation for the conductivity of graphene-based polymer composites based on the tunneling length, interphase deepness, and filler size. The study also explores the impact of these factors on the effective concentration and percolation beginning of graphene nano-sheets in nanocomposites. The developed equations are validated using experimental data and provide estimations for interphase depth, tunneling size, and percolation exponent.

SCIENTIFIC REPORTS (2023)

Article Chemistry, Multidisciplinary

Effect of Ambient Plasma Treatments on Thermal Conductivity and Fracture Toughness of Boron Nitride Nanosheets/Epoxy Nanocomposites

Won-Jong Choi, Seul-Yi Lee, Soo-Jin Park

Summary: By using ambient plasma treatment, boron nitride nanosheets (BNNS) can be prepared as fillers in epoxy nanocomposites with high thermal conductivity and fracture toughness.

NANOMATERIALS (2023)

Article Engineering, Manufacturing

Nacre-inspired conductive carbon nanotube-intercalated graphite nanoplatelet network as multifunctional thermal management materials

Yinhang Zhang, Bin Ye, Gang Zhou, Ling Li, Wenhui Geng, Lei Yao, Fei Zhang, Junwen Xie, Soo-Jin Park, Zhi Yang, Chengzhe Huang

Summary: In this study, carbon nanotubes were intercalated into oriented graphite nanoplatelets to construct conductive networks for multifunctional thermal management materials. The composite film exhibited high in-plane thermal conductivities and remarkable electrothermal and electromagnetic interference (EMI) shielding performances. It showed a temperature of 140 degrees C under an external voltage of 4V and an electromagnetic interference shielding effectiveness of 2537 dB cm^-1.

COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING (2023)

Article Chemistry, Physical

Electrochemical behaviors of binder-free CoFe-layered double- hydroxide-decorated hexagonal-flower-like NiCo2O4 as electrode for supercapacitors

Meiying Cui, Li Wei, Soo-Jin Park, Seok Kim

Summary: To increase the capacitance of an inorganic electrode material, CoFe-layered double hydroxide (LDH) was grafted onto the surface of hexagonal-flower-like NiCo2O4. Various composites with different Co/Fe ratios were grown directly on Ni foam using the hydrothermal method. The composite with a Co/Fe molar ratio of 1:2 (NiCo2O4 @Co1Fe2-LDH) exhibited the best electrochemical performance, with a specific capacitance of 2595 F g-1 at a current density of 1 A g-1. The composite prevented aggregation of CoFe-LDH, leading to high specific capacitance and good stability. The electrode was used in a packaging asymmetric capacitor, resulting in a maximum energy density of 27.33 Wh kg-1 at a power density of 800 W kg-1 and an excellent capacitive retention of 96% even after 5000 charge-discharge cycles.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Multidisciplinary Sciences

Simulating of effective conductivity for graphene-polymer nanocomposites

Mostafa Vatani, Yasser Zare, Nima Gharib, Kyong Yop Rhee, Soo-Jin Park

Summary: This article introduces a novel model for predicting the efficient conductivity of graphene-polymer systems. Simple equations are used to determine the percolation start, the share of graphene and interphase pieces in the nets. The resistances of tunneling and interphase parts are correlated to graphene conductivity. Experimental data analysis and calculations validate the correctness of the model.

SCIENTIFIC REPORTS (2023)

Review Nanoscience & Nanotechnology

A Review on Interface Engineering of MXenes for Perovskite Solar Cells

Srikanta Palei, G. Murali, Choong-Hee Kim, Insik In, Seul-Yi Lee, Soo-Jin Park

Summary: Perovskite solar cells (PSCs) with a power conversion efficiency of 25.7%, close to the Shockley-Queisser limit, are considered a strong candidate for next-generation energy harvesting. However, stability and reliability issues pose challenges for commercialization. MXenes, as two-dimensional materials, show promise in solar cell applications due to their conductivity, mobility, transparency, tunable work function, and mechanical properties. By using MXenes in different components, PSCs can achieve enhanced conductivity and stability.

NANO-MICRO LETTERS (2023)

Article Chemistry, Multidisciplinary

Highly Porous Carbon Aerogels for High-Performance Supercapacitor Electrodes

Jong-Hoon Lee, Seul-Yi Lee, Soo-Jin Park

Summary: In recent years, porous carbon materials have been developed for supercapacitor applications. Carbon aerogels with three-dimensional porous networks are promising for electrochemical energy storage. Physical activation using gaseous carbon dioxide provides controllable and eco-friendly processes, while chemical activation produces wastes. The activated carbon aerogels achieved a high specific surface area and large total pore volumes, leading to a high electrical double-layer capacitance. The specific gravimetric capacitance reached up to 89.1 F g(-1) with a high capacitance retention of 93.2% after 3000 cycles.

NANOMATERIALS (2023)

Article Chemistry, Multidisciplinary

Determination of Hydrophobic Dispersive Surface Free Energy of Activated Carbon Fibers Measured by Inverse Gas Chromatographic Technique

Seul-Yi Lee, Yeong-Hun Kim, Roop L. Mahajan, Soo-Jin Park

Summary: In this study, a novel approach to determine the London dispersive components of the surface free energy of ACFs was proposed using inverse gas chromatography. The results showed that our method provides more accurate and reliable values compared to the traditional method, making it a valuable tool for designing interface engineering in adsorption-related applications.

NANOMATERIALS (2023)

Article Chemistry, Physical

Significances of effective interphase characteristics on the Pukanszky interfacial factor and strength of halloysite-containing composites after mechanical percolation onset

Yasser Zare, Kyong Yop Rhee, Soo-Jin Park

Summary: The effects of Lc on the depth of the operative interphase, operative filler concentration, and mechanical percolation start are studied. An equation is proposed to determine the strength of HNT composites with an imperfect interphase and an HNT network. The relationships between B and Lc, HNT size, and percolation start are analyzed. The lowest Lc, lowest percolation start point, slimmest and longest HNTs, and highest interfacial shear strength yielded the highest B values and the toughest samples.

SURFACES AND INTERFACES (2023)

Article Chemistry, Applied

The influences of diameter distribution change of zeolitic imidazolate framework-67 crystal on electrochemical behavior for lithium-sulfur cell cathode

Junhyung Park, Soo-Jin Park, Seok Kim

Summary: To improve the electrochemical performance of Li-S batteries, sulfur composites are prepared through melt-diffusion of sulfur into porous materials such as MOFs. The effect of reactant concentration on particle size distribution of ZIF-67 is studied, and the performance of the product as a sulfur host for Li-S battery cathode is evaluated.

APPLIED ORGANOMETALLIC CHEMISTRY (2023)

Article Materials Science, Multidisciplinary

Amine functionalization on thermal and mechanical behaviors of graphite nanofib ers-loade d epoxy composites

Seong-Hwang Kim, Sang-Jin Park, Seul-Yi Lee, Soo-Jin Park

Summary: To meet the demand for faster and more powerful computing, effective heat dissipation is crucial for the longevity, reliability, and high performance of electronic systems. Graphitic material-loaded polymeric composites (GPCs) with excellent thermal conductivities are highly sought after in the field of modern electronic packaging materials. However, the enhancement efficiency of GPCs is hindered by filler agglomeration and interfacial thermal resistance.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Review Chemistry, Multidisciplinary

Carbon-Based Radar Absorbing Materials toward Stealth Technologies

Seong-Hwang Kim, Seul-Yi Lee, Yali Zhang, Soo-Jin Park, Junwei Gu

Summary: This review provides a comprehensive overview of stealth technology and radar absorbing materials (RAMs), with a particular focus on carbon-based materials. It discusses the history and basic concepts of stealth technology and RAMs, and explores recent advancements and strategies in carbon-based RAMs for electromagnetic attenuation. The review highlights the potential of carbon-based RAMs for practical applications and emphasizes the need for further research to enhance their performance.

ADVANCED SCIENCE (2023)

Article Chemistry, Multidisciplinary

Valorization of waste coffee grounds into microporous carbon materials for CO2 adsorption

Choong-Hee Kim, Seul-Yi Lee, Soo-Jin Park

Summary: This study successfully prepared activated carbons using coffee grounds and potassium oxalate as a biomass precursor and an activating reagent. The activated carbons showed high CO2 adsorption capacity due to their high microporosity, demonstrating the potential for eco-friendly CO2 capture with energy efficiency and mass production.

GREEN CHEMISTRY (2023)

Article Engineering, Multidisciplinary

The relationship between the impact position interference and CAI strength of composite sandwich structures under double impacts

Keyu Zhu, Xitao Zheng, Jing Peng, Jiaming Sun, Ruilin Huang, Leilei Yan

Summary: This paper discusses the influence of multiple impacts on the compression strength of honeycomb sandwich structures with composite face sheets. It is found that the size of the impactor affects the turning point of the compression strength. Additionally, high impact energy leads to damage in the bottom face sheet and reduces the overall compression strength.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Effect of carbonation on the corrosion behavior of steel rebar embedded in magnesium phosphate cement

Danqian Wang, Yanfei Yue, Jueshi Qian

Summary: Magnesium Potassium Phosphate Cement (MKPC) as a binder for steel rebars shows improved corrosion resistance when subjected to carbonation, due to the increase in pH and the formation of a more protective oxide film.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Mechanical properties and failure mechanisms of all-CFRP corrugated sandwich truncated cone

Zhibin Li, Wenyu Wang, Pengcheng Xue, Xingyu Wei, Jian Xiong

Summary: This work proposes a design approach and manufacturing method for carbon fiber reinforced plastic (CFRP) corrugated sandwich truncated cones (CSTC) to improve their anti-debonding ability and ensure reliability. The study establishes theoretical models for CSTCs' stiffness and failure modes, which are verified through experiments and finite element analysis (FEA). The research reveals the effect of geometric parameters on failure modes and performs an optimal design for CSTC structures. The findings have significant implications for the design and application of lightweight CSTCs in constructions, such as launch vehicle adapters.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Asymmetric wettability fibrous membranes: Preparation and biologic applications

Mingyu Zhang, Lei Chu, Jiahua Chen, Fuxun Qi, Xiaoyan Li, Xinliang Chen, Deng-Guang Yu

Summary: This review summarizes the different structures and construction methods of fibrous membranes with asymmetric wettability. It also reviews the biological applications of these membranes and suggests future challenges.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Effect of fibre concentration on the mechanical properties of welded reinforced polypropylene

E. Mofakhami, L. Gervat, B. Fayolle, G. Miquelard-Garnier, C. Ovalle, L. Laiarinandrasana

Summary: This study investigates the effects of fibre concentration on the mechanical response of welded glass-fibre-reinforced polypropylene (GF-PP). Experimental observations reveal a significant reduction in weld ratio, up to 60%, indicating a decreased strength compared to the bulk material. Increasing fibre content in the welded material results in a decrease in stress at break and strain at the maximum stress. The use of DIC technique and X-ray microtomography further confirms the localized strain amplification in the welded zone due to the significant increase in fibre density.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Interlaminar shear strength of Carbon/PEEK thermoplastic composite laminate: Effects of in-situ consolidation by automated fiber placement and autoclave re-consolidation

Emad Pourahmadi, Farjad Shadmehri, Rajamohan Ganesan

Summary: This research compares the mechanical properties of laminates manufactured using automated fiber placement and conventional autoclave curing methods. The results show that laminates manufactured using automated fiber placement have a lower interlaminar shear strength compared to laminates reconsolidated using autoclave curing. A finite element simulation method is proposed to quantitatively analyze these differences.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Bolted joint method for composite materials using a novel fiber/metal patch as hole reinforcement-Improving both static and fatigue properties

Johnny Jakobsen, Benny Endelt, Fahimeh Shakibapour

Summary: This study proposes a new bolted/pinned joining method for composite applications, which improves load transfer by introducing a patch-type reinforcement. Experimental results demonstrate significant improvements in both static and fatigue load conditions compared to existing methods. Finite element simulations highlight the advantage of this method, as it creates a more efficient load-transferring mechanism through different stress distributions.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Novel multi-crack damage approach for pultruded fiber-polymer web-flange junctions

Gisele G. Cintra, Janine D. Vieira, Daniel C. T. Cardoso, Thomas Keller

Summary: This paper proposes a novel approach to assess multi-crack behavior in layered fiber-polymer composites. The generated Compliance and R-curves provide useful insights into understanding the multiple delamination process and allow for separate evaluation of strain energy release rate (SERR) for each crack. The developed cohesive zone model successfully simulates the failure process zone of three parallel cracks, showing good agreement between the numerical model and experimental results.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Uncovering the hidden structure: A study on the feasibility of induction thermography for fiber orientation analysis in CFRP composites using 2D-FFT

Renil Thomas Kidangan, Sreedhar Unnikrishnakurup, C. Krishnamurthy, Krishnan Balasubramaniam

Summary: The induction heating process can accurately identify fiber orientation and stacking order, making it a valuable tool for large-area inspection and quality control in manufacturing fiber-reinforced composites.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Morphological characteristics of spray dried cellulose nanofibers produced using various wood pulp feedstocks and their effects on polypropylene composite properties

Sungjun Hwang, Yousoo Han, Douglas J. Gardner

Summary: Bleached Kraft pulp, unbleached Kraft pulp, and old corrugated cardboard pulp are suitable for producing cellulose nanofibril suspensions. Spray drying is a fast, simple, cost-effective, and scalable drying method. Spray-dried cellulose nanofibrils can be used as reinforcing materials in polypropylene matrices. The particle size of cellulose nanofibrils affects the material properties.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Four-dimensional printing of continuous glass fiber-reinforced thermoplastics

Mehdi Mahdavi, Abbas Zolfaghari

Summary: This study aims to improve the recovery forces of shape memory polymers (SMPs) through material extrusion additive manufacturing. By using glass fiber (GF) as reinforcement and manufacturing multi-layer composite specimens, it was found that PLA with 6.62% GF exhibited the best recovery force, which was further optimized through annealing heat treatment.

COMPOSITES PART B-ENGINEERING (2024)

Review Engineering, Multidisciplinary

Flame retardancy and fire mechanical properties for natural fiber/polymer composite: A review

Xiang Ao, Antonio Vazquez-Lopez, Davide Mocerino, Carlos Gonzalez, De-Yi Wang

Summary: The vulnerability of natural fibers to heat and fire poses a significant challenge for their substitution of traditional fiber reinforcements in composite materials. Natural fiber/polymer composites (NFCs) are regarded as potential candidates for engineering applications due to their environmental friendliness and low-impact sourcing. Thus, appropriate approaches need to be implemented to enhance the fire safety of NFCs. This review summarizes and discusses the latest understanding of flammability and thermal properties of natural fibers, with a special focus on their interaction with polymer matrix in fire behavior. Additionally, the latest developments in flame-retardant approaches for NFCs are reviewed, covering both flame retardancy and fire structural integrity. Finally, future prospects and perspectives on fire safety of NFCs are proposed, providing insights into further advancements of NFCs.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Construction of an epoxidized, phosphorus-based poly(styrene butadiene styrene) and its application in high-performance epoxy resin

Cheng Wang, Siqi Huo, Guofeng Ye, Bingtao Wang, Zhenghong Guo, Qi Zhang, Pingan Song, Hao Wang, Zhitian Liu

Summary: The demand for multifunctional, transparent epoxy resin with superior dielectric, mechanical, and fire-safety performances is increasing in modern industries. Researchers have developed an epoxidized, phosphaphenanthrene-containing poly(styrene butadiene styrene) (ESD) for advanced fire-safe epoxy resin, which maintains high transparency and improves UV-blocking property. The addition of 10 wt% ESD results in improved mechanical properties, decreased dielectric constant and loss, and outperformance compared to other fire-safe epoxy resins. This research provides an effective method for developing multifunctional flame-retardant epoxy resin.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Inner superhydrophobic materials based on waste fly ash: Microstructural morphology of microetching effects

Bo Pang, Heping Zheng, Zuquan Jin, Dongshuai Hou, Yunsheng Zhang, Xiaoyun Song, Yanan Sun, Zhiyong Liu, Wei She, Lin Yang, Mengyuan Li

Summary: This study develops an internal superhydrophobic material (ISM) using waste denitrification fly ash, which maintains stable hydrophobicity under harsh conditions of use and does not rely on expensive fluor-based surface modifications. The synthesized ISM has excellent matrix strength, strong waterproof properties, and retains superhydrophobicity even at damaged or friction interfaces.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Directional eddy current probe configuration for in-line detection of out-of-plane wrinkles

Meirbek Mussatayev, Qiuji Yi, Mark Fitzgerald, Vincent K. Maes, Paul Wilcox, Robert Hughes

Summary: Real-time monitoring of carbon fibre composites during Automated Fibre Placement (AFP) manufacturing remains a challenge for non-destructive evaluation (NDE) techniques. This study designed a directional eddy-current (EC) probe to evaluate the detectability of out-of-plane wrinkles. Experimental evaluations and finite element modeling were conducted to better understand the relationship between eddy-current density and defect detection. The findings suggest that the probe configuration with an asymmetric driver coil and differential pickup coils shows the best capability for wrinkle detection.

COMPOSITES PART B-ENGINEERING (2024)