4.3 Article Proceedings Paper

Mechanical and tribological enhancement of polyoxymethylene-based composites with long basalt fiber through melt pultrusion

Journal

COMPOSITE INTERFACES
Volume 23, Issue 8, Pages 743-761

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/09276440.2016.1168124

Keywords

Polyoxymethylene-based composites; basalt fibers; LFRT technology; mechanical properties; tribological performance

Ask authors/readers for more resources

The polyoxymethylene (POM)/basalt fiber composites were prepared by use of long fiber-reinforced thermoplastic technology through melt pultrusion. The mechanical and tribological properties, morphology, and thermal stability of the resulting composites were investigated. The composites exhibit significant improvements in tensile, flexural, and notched impact strength. These mechanical strength and toughness are dependent on the fiber content over the full range of the study. The residual fiber length and distribution in the injection-molded specimens were characterized. The prominent reinforcement effect of basalt fiber on POM is derived from the supercritical fiber length, which is much longer than that of the short fiber-reinforced ones and thus makes the composites take full advantage of the strength of the reinforcing fibers. The Kelly-Tyson model was used to predict the ultimate tensile strength of POM composites using the measured values of residual fiber length in the matrix, but the deviations were observed at the high contents of basalt fiber. The morphologic investigation indicates that the fiber pullout and fiber breakage both contribute energy dissipation to the tensile fracture of the composites. The tribological characterization indicates that the friction coefficients and specific wear rates of POM composites also decrease remarkably. Such an improvement of tribological performance is due to the presence of the high wear-resistant basalt fibers on the top of the worn surface bearing the dynamic loadings under sliding. Moreover, the dynamic mechanical analysis reveals that the storage moduli of the composites increase with increasing the fiber content, whereas the loss factors present an opposite trend.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available