4.5 Article

Molecular evidence for the existence of an aryl hydrocarbon receptor pathway in scallops Chlamys farreri

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cbpb.2016.02.006

Keywords

AhR; Chlamys farreri; cDNA cloning; Recombinant expression; Benzo(a)pyrene; AhR/ARNT signal pathway; Tissue-expression profile

Funding

  1. Shandong Provincial Natural Science Foundation [30972237]
  2. State Oceanic Administration, People's Republic of China [201105013]

Ask authors/readers for more resources

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that controls the expression of a diverse set of genes. In this study we cloned full-length cDNAs encoding an AhR homologue (designated CfAhR, Accession number: FJ588640) from scallop Chlamys farreri. The CfAhR sequence was constituted by an open reading frame (ORF) of 2466 bp encoding 821 amino acids. The predicted molecular weight was 93.0 kDa. The CfAhR showed a high conservation of the residues and domains essential to the function of AhR, including basic helix-loop-helix (bHLH) and Per-ARNT-Sim (PAS) domains. Phylogenetic analysis demonstrated that it was clustered within the invertebrate AhR branch. CfAhR expression was detected in gill, digestive gland, ovary, spermary, mantle and adductor, and the highest transcription level was observed in gill. Recombinant plasmid CfAhR-pET32a (designated rCfAhR) was successfully expressed in Escherichia coli BL21. To investigate the molecular detoxification mechanism of benzo(a)pyrene (BaP) detoxification-related genes (AhR; aryl hydrocarbon receptor nuclear translocator, ARNT; heat shock protein 90, HSP90; cytochrome P450 1A1, CYP1A1; glutathione S-transferase pi, GST-pi and P glycoprotein, Pgp) in C. farreri gill, real-time quantitative PCR analysis revealed that the mRNA expression level of CfAhR, xenobiotic-metabolizing enzymes and efflux transporters was induced by BaP and was sensitive to BaP exposure time and concentration, suggesting that BaP influenced the expression of a putative AhR/ARNT signaling pathway in scallops. Our results support the possibility that CfAhR genes are early molecular indicators of BaP through a putative CYP signaling pathway in marine bivalves. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available