4.7 Article

Electrodeposited CuAgHg Multimetallic Thin Films for Improved CO2 Conversion: the Dramatic Impact of Hg Incorporation on Product Selectivity

Journal

ACS APPLIED ENERGY MATERIALS
Volume 3, Issue 7, Pages 6670-6677

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.0c00784

Keywords

CO2 reduction; electrocatalysis; multimetallic; scanning electrochemical microscopy; surface intermediate

Funding

  1. Basic Science Research Program through the National Research Foundation (NRF) of Korea [NRF-2020R1C1C1007409, NRF-2019M3E6A1064707]

Ask authors/readers for more resources

The CO2 reduction reaction (CO2RR) remains a prominent hurdle in the overall solar to fuel conversion process. A key research direction for CO2RR is tuning of the product selectivity to desired fuels while suppressing the undesired hydrogen-evolving side reaction. In this work, we employed a CuAgHg multimetallic thin-film catalyst for CO2RR. By incorporation of Hg atoms, we attempted to minimize the surface-adsorbed hydrogen atoms during CO2RR, thereby minimizing hydrogen evolution. In situ electrochemical surface interrogation along with vibrational spectroscopy revealed that Hg incorporation led to significantly suppressed surface adsorption of hydrogen atoms, as well as increased surface concentration of the intermediate CO, which is in competitive binding with protons. The two effects combined led to an ethanol-selective CO2RR catalyst; with the optimum composition, the CuAgHg electrode produced 32% ethanol and 41% C-2 (ethanol + ethylene) products, comparable to those of the best catalysts reported. Remarkably, this catalysis was possible holding the hydrogen evolving side reaction to mere 10% and achieving 100% overall faradaic efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available