4.7 Article

Carbon Coated Porous Titanium Niobium Oxides as Anode Materials of Lithium-Ion Batteries for Extreme Fast Charge Applications

Journal

ACS APPLIED ENERGY MATERIALS
Volume 3, Issue 6, Pages 5657-5665

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.0c00633

Keywords

lithium-ion battery; anode material; titanium niobium oxide; carbon coating; extreme fast charging

Funding

  1. Office of Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office (VTO)
  2. ORNL's Center for Nanophase Materials Sciences - U.S. Department of Energy, Office of Science, Scientific User Facility Division

Ask authors/readers for more resources

The development of electric vehicles (EVs) has been restricted by severe lithium plating in lithium-ion batteries (LIBs) with graphite as the anode. To mitigate the lithium plating issue, carbon coated porous titanium niobium oxides (TNO@C) have been synthesized and evaluated as anode materials for extreme fast charge (XFC) applications in LIBs. Various methods have been utilized to optimize the full cells with LiNi0.6Mn0.2Co0.2O2 (NMC) as the cathode and TNO@C as the anode, delivering a high energy density of 142.8 Wh/kg (357 Wh/L) and a good energy density retention over 80% after 500 cycles with a 10 min fast charging protocol. The interfacial behaviors of the TNO@C and NMC electrodes during XFC cycling have also been investigated, proving that the lithium plating problem can be effectively suppressed by the high-voltage TiNb2O7 anode even under XFC conditions. The high energy density and long cycling stability of the NMC/TNO@C full cells demonstrate that the TNO@C anode is a promising candidate to replace graphite anode in LIBs for fast charging EVs with long driving ranges.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available