4.7 Article

Realization of a motility-trap for active particles

Journal

COMMUNICATIONS PHYSICS
Volume 3, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s42005-020-0393-4

Keywords

-

Funding

  1. ERC Advanced Grant ASCIR [693683]
  2. German Research Foundation (DFG) [SPP 1726]
  3. European Research Council (ERC) [693683] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Trapping of atomic and mesoscopic particles with optical fields is a practical technique employed in many research disciplines. Developing similar trapping methods for self-propelled, i.e. active, particles is, however, challenging due to the typical anisotropic material composition of Janus-type active particles. This renders their trapping with magneto-optical fields to be difficult. Here we present the realization of a motility-trap for active particles, which only exploits their self-propulsion properties. By combining experiments, numerical simulations, and theory, we show that, under appropriate conditions, a force-free rotation of the self-propulsion direction towards the trap's center can be achieved, which results in an exponential localization of active particles. Because this trapping mechanism can be applied to any propulsion scheme, we expect such motility-tweezers to be relevant for fundamental studies of self-driven objects as well as for their applications as autonomous microrobots. An outstanding challenge in active matter physics is to control the motion of active particles. Here, the authors present a motility trap that can be applied to any self-propulsion scheme, and combine experiments, theory, and simulations to demonstrate robust spatio-temporal control of active particles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available