4.7 Article

Ca treated Palygorskite and Halloysite clay minerals for Ferrous Iron (Fe+2) removal from water systems

Journal

ENVIRONMENTAL TECHNOLOGY & INNOVATION
Volume 19, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.eti.2020.100961

Keywords

Palygorskite; Halloysite; Ca-treatment; Fe (II); Sorption; Molecular simulations

Ask authors/readers for more resources

Palygorskite fibers and halloysite nanotubes (HNT) were used for the Fe (II) uptake from aqueous solutions under various experimental conditions. Palygorskite and halloysite samples were characterized using XRD, FTIR, SEM, BET and CEC and then were saturated by exchanging Ca+2 cations. The Ca-Palygorskite (Ca-Pal) and Ca-Halloysite (Ca-Hall) were characterized as well, and applied in batch kinetic experiments series. It was shown that both Ca-treated clay minerals were more efficient adsorbents for the lowest ferrous concentrations removal (5 mg/L), especially when the highest solid: liquid ratio (20 g/L) have been applied, reaching 99.8% and 91.2% removal with Ca-Pal and Ca-Hall respectively, within 10 min at the optimal room temperature (20 +/- 1 degrees C). The pH value affected the adsorption's efficiency, as Ca-Pal was more efficient adsorbent at acidic values (4-6), while Ca-Hall efficiency is positively correlated with pH increase (7 <). Moreover, the competitive ions found to prohibit Ca-Hall capacity for Fe (II), following the order Mn

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available