4.3 Article

High-dose vitamin C alleviates pancreatic injury via the NRF2/NQO1/HO-1 pathway in a rat model of severe acute pancreatitis

Journal

ANNALS OF TRANSLATIONAL MEDICINE
Volume 8, Issue 14, Pages -

Publisher

AME PUBL CO
DOI: 10.21037/atm-19-4552

Keywords

Severe acute pancreatitis (SAP); pancreatic acinar cells injury; vitamin C; oxidative stress; NRF2/NQO1/HO-1 pathway; inflammation

Funding

  1. Medical Guidance Project of Shanghai Municipal Committee of Science and Technology [16411970700]
  2. Shanghai Municipal Commission of Health and Family Planning [2016ZB0206, ZHYY-ZXYJHZX-1-201702]
  3. National Natural Science Foundation of China [81600501]

Ask authors/readers for more resources

Background: Oxidative stress plays a pivotal role in the progress of severe acute pancreatitis (SAP). Vitamin C (VC) is the most important antioxidant in plasma. However, the effects of an intravenous administration of high-dose VC and the mechanisms by which it exerts its antioxidant function in an experimental model of SAP have not been determined. Methods: Sodium taurocholate was used to induce rat pancreatic injury and AR42J cells injury. After the establishment of SAP model, SAP rat and injured AR42J cells were treated with VC. For the injured AR42J cells, small interfering RNA-mediated knockdown of NRF2 was conducted after VC treatment. The histopathological characteristics, the apoptosis of pancreatic acinar cells, oxidative stress markers and levels of enzymes, biochemical indicators, and inflammatory cytokines were examined in vivo and in vitro. Furthermore, the mortality of rats was assessed. Results: In vivo and in vitro results demonstrated that VC treatment ameliorated apoptosis of pancreatic acinar cells, as evidenced by the increase in Bcl-2, Bcl-XL, and MCL-1 expressions and decrease in Bax and cleaved caspase-3 expression along with decreased TUNEL-positive cells. Also, we found that the elevation of MDA and decrease of SOD, GPx, GSH/GSSG, and T-AOC induced by SAP were reversed by VC treatment in vivo and in vitro, and VC treatment increased expressions of Nrf2, NQO1, and HO-1 in SAP model at protein and gene level, indicating that VC attenuated oxidative stress via the NRF2/NQO1/HO-1 pathway. Meanwhile, it was found that sodium taurocholate significantly induced the release of amylase, lipase, IL-1 beta, and IL-6 in rat plasma and AR42J cells, which were declined by VC treatment. In vitro results also revealed that these alterations in sodium taurocholate-injured AR42J cells due to VC treatment was attenuated by NRF2 knockdown. In addition, VC at a dose of 500 mg/kg decreased the levels of lactic acid, Cre, NGAL, AST, and ALT in the plasma of SAP rats, suggesting the improvement of renal and pancreatic injury and liver function of SAP rats. Furthermore, the mortality of SAP rats was 50%, which declined to 30% after VC treatment. Conclusions: The present study suggests that high-dose of VC ameliorate pancreatic injury of SAP via the NRF2/NQO1/HO-1 pathway to inhibit oxidative stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available