4.7 Article

An updated experimental and kinetic modeling study of n-heptane oxidation

Journal

COMBUSTION AND FLAME
Volume 172, Issue -, Pages 116-135

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2016.06.028

Keywords

n-Heptane; Kinetic model; Oxidation; Shock tube; Jet-stirred reactor

Funding

  1. People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme under REA [607214]
  2. COST Action [CM1404]
  3. cluster of excellence Tailor Made Fuels from Biomass
  4. Excellence Initiative by the German federal government
  5. Excellence Initiative by the German state government

Ask authors/readers for more resources

This work presents an updated experimental and kinetic modeling study of n-heptane oxidation. In the experiments, ignition delay times of stoichiometric n-heptaneiair mixtures have been measured in two different high-pressure shock tubes in the temperature range of 726-1412 K and at elevated pressures (15, 20 and 38 bar). Meanwhile, concentration versus time profiles of species have been measured in a jet-stirred reactor at atmospheric pressure, in the temperature range of 500-1100K at phi=0.25, 2.0 and 4.0. These experimental results are consistent with those from the literature at similar conditions and extend the current data base describing n-heptane oxidation. Based on our experimental observations and previous modeling work, a detailed kinetic model has been developed to describe n-heptane oxidation. This kinetic model has adopted reaction rate rules consistent with those recently developed for the pentane isomers and for n-hexane. The model has been validated against data sets from both the current work and the literature using ignition delay times, speciation profiles measured in a jet-stirred reactor and laminar flame speeds over a wide range of conditions. Good agreement is observed between the model predictions and the experimental data. The model has also been compared with several recently published kinetic models of n-heptane and shows an overall better performance. This model may contribute to the development of kinetic mechanisms of other fuels, as n-heptane is a widely used primary reference fuel. Since the sub-mechanisms of n-pentane, n-hexane and n-heptane have adopted consistent reaction rate rules, the model is more likely to accurately simulate the oxidation of mixtures of these fuels. In addition, the successful implementation of these rate rules have indicated the possibility of their application for the development of mechanisms for larger hydrocarbon fuels, which are of great significance for practical combustion devices. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available