4.6 Article

Short-Term Wind Speed Prediction Based on Principal Component Analysis and LSTM

Journal

APPLIED SCIENCES-BASEL
Volume 10, Issue 13, Pages -

Publisher

MDPI
DOI: 10.3390/app10134416

Keywords

wind speed prediction; PCA; LSTM

Funding

  1. National Natural Science Foundation of China [61703268]
  2. Open Project Program of Shanghai Key Laboratory of Intelligent Manufacturing and Robotics [zk1703]

Ask authors/readers for more resources

An accurate prediction of wind speed is crucial for the economic and resilient operation of power systems with a high penetration level of wind power. Meteorological information such as temperature, humidity, air pressure, and wind level has a significant influence on wind speed, which makes it difficult to predict wind speed accurately. This paper proposes a wind speed prediction method through an effective combination of principal component analysis (PCA) and long short-term memory (LSTM) network. Firstly, PCA is employed to reduce the dimensions of the original multidimensional meteorological data which affect the wind speed. Further, differential evolution (DE) algorithm is presented to optimize the learning rate, number of hidden layer nodes, and batch size of the LSTM network. Finally, the reduced feature data from PCA and the wind speed data are merged together as an input to the LSTM network for wind speed prediction. In order to show the merits of the proposed method, several prevailing prediction methods, such as Gaussian process regression (GPR), support vector regression (SVR), recurrent neural network (RNN), and other forecasting techniques, are introduced for comparative purposes. Numerical results show that the proposed method performs best in prediction accuracy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available