4.5 Article

Hybrid Thermal-Chemical Enhanced Oil Recovery Methods; An Experimental Study for Tight Reservoirs

Journal

SYMMETRY-BASEL
Volume 12, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/sym12060947

Keywords

chemical methods; brine salinity; foam injection; thermal recovery techniques; oil recovery factor

Funding

  1. Key research project of social sciences and humanities in AnHui Province [SK2017A0386]

Ask authors/readers for more resources

It is essential to have an adequate understanding of the fluid-structure in a porous medium since this gives direct information about the processes necessary to extract the liquid and the likely yield. The concept of symmetry is one of the petroleum engineering issues that has been used to provide an analytical analysis for modeling fluid dynamics through porous media, which can be beneficial to validate the experimental field data. Tight reservoirs regarding their unique reservoir characterization have always been considered as a challenging issue in the petroleum industries. In this paper, different injectivity scenarios which included chemical and thermal methods were taken into consideration to compare the efficiency of each method on the oil recovery enhancement. According to the results of this experiment, the recovery factor for foams and brine injection is about 80%, while it is relatively 66% and 58% for brine-carbon dioxide and brine-nitrogen, respectively. Consequently, foam injection after water flooding would be an effective method to produce more oil volumes in tight reservoirs. Moreover, KCl regarding its more considerable wettability changes has provided more oil production rather than other scenarios.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available