4.5 Article

Retinal Blood Vessel Segmentation Using Hybrid Features and Multi-Layer Perceptron Neural Networks

Journal

SYMMETRY-BASEL
Volume 12, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/sym12060894

Keywords

retinal image analysis; edge detection; feature extraction; blood vessel segmentation; medical imaging; pattern recognition

Ask authors/readers for more resources

Segmentation of retinal blood vessels is the first step for several computer aided-diagnosis systems (CAD), not only for ocular disease diagnosis such as diabetic retinopathy (DR) but also of non-ocular disease, such as hypertension, stroke and cardiovascular diseases. In this paper, a supervised learning-based method, using a multi-layer perceptron neural network and carefully selected vector of features, is proposed. In particular, for each pixel of a retinal fundus image, we construct a 24-D feature vector, encoding information on the local intensity, morphology transformation, principal moments of phase congruency, Hessian, and difference of Gaussian values. A post-processing technique depending on mathematical morphological operators is used to optimise the segmentation. Moreover, the selected feature vector succeeded in outfitting the symmetric features that provided the final blood vessel probability as a binary map image. The proposed method is tested on three known datasets: Digital Retinal Image for Extraction (DRIVE), Structure Analysis of the Retina (STARE), and CHASED_DB1 datasets. The experimental results, both visual and quantitative, testify to the robustness of the proposed method. This proposed method achieved 0.9607, 0.7542, and 0.9843 in DRIVE, 0.9632, 0.7806, and 0.9825 on STARE, 0.9577, 0.7585 and 0.9846 in CHASE_DB1, with respectable accuracy, sensitivity, and specificity performance metrics. Furthermore, they testify that the method is superior to seven similar state-of-the-art methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available