4.6 Article

Angle-Closure Detection in Anterior Segment OCT Based on Multilevel Deep Network

Journal

IEEE TRANSACTIONS ON CYBERNETICS
Volume 50, Issue 7, Pages 3358-3366

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCYB.2019.2897162

Keywords

Image segmentation; Deep learning; Feature extraction; Imaging; Iris; Visualization; Cornea; Angle-closure detection; anterior chamber angle (ACA); anterior segment optical coherence tomography (AS-OCT); deep learning

Funding

  1. BEP [1521480034]
  2. Ningbo 3315 Innovation Team [Y61102DL03]
  3. National Natural Science Foundation of China [61602345]

Ask authors/readers for more resources

Irreversible visual impairment is often caused by primary angle-closure glaucoma, which could be detected via anterior segment optical coherence tomography (AS-OCT). In this paper, an automated system based on deep learning is presented for angle-closure detection in AS-OCT images. Our system learns a discriminative representation from training data that captures subtle visual cues not modeled by handcrafted features. A multilevel deep network is proposed to formulate this learning, which utilizes three particular AS-OCT regions based on clinical priors: 1) the global anterior segment structure; 2) local iris region; and 3) anterior chamber angle (ACA) patch. In our method, a sliding window-based detector is designed to localize the ACA region, which addresses ACA detection as a regression task. Then, three parallel subnetworks are applied to extract AS-OCT representations for the global image and at clinically relevant local regions. Finally, the extracted deep features of these subnetworks are concatenated into one fully connected layer to predict the angle-closure detection result. In the experiments, our system is shown to surpass previous detection methods and other deep learning systems on two clinical AS-OCT datasets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available