4.6 Article

Soil Microbial Community Response Differently to the Frequency and Strength of Freeze-Thaw Events in aLarix gmeliniiForest in the Daxing'an Mountains, China

Journal

FRONTIERS IN MICROBIOLOGY
Volume 11, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2020.01164

Keywords

freeze-thaw cycle frequency; freeze-thaw temperature fluctuation; soil microbial biomass; microbial community structure; enzyme activity

Categories

Funding

  1. National Natural Science Foundation of China [31670496]
  2. Fundamental Research Funds for the Central Universities [2572019AA21]

Ask authors/readers for more resources

Sustained climate warming increases the frequency and strength of soil freeze-thaw (FT) events, which strongly affect the properties of soil microbial communities. To explore the responses and mechanisms of the frequency and strength of freeze-thaw events on soil microbial communities, a lab-scale FT test was conducted on forest soil in permafrost region from the Daxing'an Mountains, China. The number of FT cycles (FTN) had a greater effect on microbial communities than FT temperature fluctuation (FTF). The FTN and FTF explained 20.9 and 10.8% of the variation in microbial community structure, respectively, and 22.9 and 11.6% of the variation in enzyme activities, respectively. The total and subgroup microbial biomass, the ratio of fungi to bacteria (F/B), and C- and N-hydrolyzing enzyme activities all decreased with an increase in FTN. Among microbial groups, arbuscular mycorrhizal fungi (AMF) were the most sensitive to FT events. Based on the changes of F/B and AMF, the reduction in soil carbon sequestration caused by frequent FT events can be explained from a perspective of microorganisms. Based on redundancy analysis and Mental Test, soil moisture, total organic carbon, and total nitrogen were the major factors affecting microorganisms in FT events. In the forest ecosystem, soil water and fertilizer were important factors to resist the damage of FT to microorganism, and sufficient water and fertilizer can lighten the damage of FT events to microorganisms. As a result of this study, the understanding of the responses of soil microorganisms to the variation in FT patterns caused by climate changes has increased, which will lead to better predictions of the effects of likely climate change on soil microorganisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available