4.5 Article

LncRNA PVT1 induces aggressive vasculogenic mimicry formation through activating the STAT3/Slug axis and epithelial-to-mesenchymal transition in gastric cancer

Journal

CELLULAR ONCOLOGY
Volume 43, Issue 5, Pages 863-876

Publisher

SPRINGER
DOI: 10.1007/s13402-020-00532-6

Keywords

Gastric cancer; Vasculogenic mimicry; PVT1; Slug; Epithelial-to-mesenchymal transition

Funding

  1. Natural Science Foundation of China [81672378, 81201521]

Ask authors/readers for more resources

Purpose Vasculogenic mimicry (VM), a vessel-like network formed by highly aggressive tumor cells, plays an important role in accelerating cancer progression. This special vascularization pattern is closely associated with a poor prognosis in various cancers. As yet, however, the regulatory mechanism of VM formation is largely unknown. In this study, we assess whether the long noncoding RNA PVT1 is involved in VM generation in gastric cancer. Methods VM formation was determined by immunohistochemistry using PAS/CD31 double staining in gastric cancers and Matrigel tube formation in vitro. qRT-PCR and Western blotting were used to assess mRNA and protein expression. Interaction between PVT1 and STAT3 was determined using a RNA pull-down assay. Luciferase reporter and chromatin immunoprecipitation assays were performed to evaluate transcriptional activity of STAT3 on theSluggene promoter. Results We found that PVT1 can induce VM generation both in vitro and in vivo. Mechanistically, we found that PVT1 interacted with and activated STAT3 through a 850-1770 nt fragment. PVT1 facilitated STAT3 recruitment to theSlugpromoter and transcriptionally enhanced Slug expression, thereby triggering epithelial-to-mesenchymal transition (EMT) and VM capillary formation. STAT3 inhibition effectively blocked PVT1-mediated VM. In primary gastric cancer samples, a positive correlation was found between PVT1 and Slug upregulation, and patients with a high PVT1 and Slug expression exhibited markedly shorter survival times. Conclusion Our results shed light on the role of PVT1 in gastric cancer cell-dependent VM formation. Our findings provide valuable clues for the design of new anti-angiogenic therapeutic strategies. The PVT1/STAT3 axis may serve as a potential target in gastric cancer treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available