4.4 Article

Evaluating emissions and sensitivity of economic gains for series plug-in hybrid electric vehicle powertrains for transit bus applications

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0954407020937522

Keywords

Plug-in hybrid electric vehicle; series; parallel; battery degradation; life-cycle analysis

Funding

  1. Cummins Inc.

Ask authors/readers for more resources

From the design space explored for series architecture plug-in hybrid electric vehicle transit buses by the authors, one powertrain and control design is selected to provide maximum benefit to investment ratio. Sensitivity analysis is performed for this powertrain configuration. Vehicle parameters (including vehicle mass, coefficient of drag, coefficient of rolling resistance), usage parameters (drivecycle, annual vehicle miles traveled, number of recharges in a day, recharge current, and battery temperature), and economic parameters (fuel price, motor price, and battery price) are varied to understand their effect on the number of required battery replacements, net present value, payback period, and fuel consumption reduction. It is shown that battery temperature has the most significant impact, particularly on the number of battery replacements and net present value and, as such, must be well controlled in practice. It is shown that to maintain the battery at 20 degrees C, for ambient temperatures between -5 degrees C and 45 degrees C, 0.8-1.8% excess fuel is required across all drivecycles for the considered plug-in hybrid electric vehicle transit bus powertrain configuration. In addition, the well-to-wheel emissions of criteria pollutants resulting from the usage of this plug-in hybrid electric vehicle transit bus in Indiana and California are calculated and compared with the conventional transit bus, using the GREET (Greenhouse Gases, Regulated Emissions and Energy Use in Transportation) Model. With a single over night charge, the plug-in hybrid electric vehicle transit bus operating in either Indiana or California produces 50% less CO(2)and other greenhouse gases as compared to a conventional transit bus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available