4.6 Article

Enhanced wall shear stress prevents obstruction by astrocytes in ventricular catheters

Journal

JOURNAL OF THE ROYAL SOCIETY INTERFACE
Volume 17, Issue 168, Pages -

Publisher

ROYAL SOC
DOI: 10.1098/rsif.2019.0884

Keywords

hydrocephalus; ventricular catheters; obstruction; astrocytes; wall shear stress; direct flow visualization

Funding

  1. Edgerton Fund
  2. MIT Research Committee Funds (Reed, Ferry and Westaway)
  3. Kwanjeong Educational Foundation Scholarship

Ask authors/readers for more resources

The treatment of hydrocephalus often involves the placement of a shunt catheter into the cerebrospinal ventricular space, though such ventricular catheters often fail by tissue obstruction. While diverse cell types contribute to the obstruction, astrocytes are believed to contribute to late catheter failure that can occur months after shunt insertion. Usingin vitromicrofluidic cultures of astrocytes, we show that applied fluid shear stress leads to a decrease of cell confluency and the loss of their typical stellate cell morphology. Furthermore, we show that astrocytes exposed to moderate shear stress for an extended period of time are detached more easily upon suddenly imposed high fluid shear stress. In light of these findings and examining the range of values of wall shear stress in a typical ventricular catheter through computational fluid dynamics (CFD) simulation, we find that the typical geometry of ventricular catheters has low wall shear stress zones that can favour the growth and adhesion of astrocytes, thus promoting obstruction. Using high-precision direct flow visualization and CFD simulations, we discover that the catheter flow can be formulated as a network of Poiseuille flows. Based on this observation, we leverage a Poiseuille network model to optimize ventricular catheter design such that the distribution of wall shear stress is above a critical threshold to minimize astrocyte adhesion and growth. Using this approach, we also suggest a novel design principle that not only optimizes the wall shear stress distribution but also eliminates a stagnation zone with low wall shear stress, which is common to current ventricular catheters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available