4.8 Article

Electronic Properties and Carrier Trapping in Bi and Mn Co-doped CsPbCl3 Perovskite

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 11, Issue 14, Pages 5482-5489

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.0c01567

Keywords

-

Funding

  1. Ministero Istruzione dell'Universita e della Ricerca (MIUR)
  2. University of Perugia
  3. European 531 Union's Horizon 2020 research and innovation programme under Espresso project [764047]

Ask authors/readers for more resources

Metal halide perovskites exhibit impressive optoelectronic properties with applications in solar cells and light-emitting diodes. Co-doping the high-band gap CsPbCl3 perovskite with Bi and Mn enhances both material stability and luminescence, providing emission on a wide spectral range. To discuss the role of Bi3+ and Mn2+ dopants in tuning the CsPbCl3 perovskite energy levels and their involvement in carrier trapping, we report state-of-the-art hybrid density functional theory calculations, including spin-orbit coupling. We show that co-doping the perovskite with Bi and Mn delivers essentially the sum of the electronic properties of the single dopants, with no significant interaction or the preferential mutual location of them. Furthermore, we identify the structural features and energetics of transitions of electrons trapped at Bi and holes trapped at Mn dopant ions, respectively, and discuss their possible role in determining the optical properties of the co-doped perovskite.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available