4.4 Article

Comparison of dimensional accuracy and tolerances of powder bed based and nozzle based additive manufacturing processes

Journal

JOURNAL OF LASER APPLICATIONS
Volume 32, Issue 3, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.2351/7.0000115

Keywords

additive manufacturing; dimensional accuracy; benchmark artefact; laser metal deposition; laser powder bed fusion; electron beam melting

Funding

  1. Program Zwanzig20 of the German Federal Ministry of Education and Research (Consortium AGENT-3D)

Ask authors/readers for more resources

Additive manufacturing processes have the potential to produce near-net shaped complex final parts in various industries such as aerospace, medicine, or automotive. Powder bed based and nozzle based processes like laser metal deposition (LMD), laser powder bed fusion (LPBF), and electron beam melting (EBM) are commercially available, but selecting the most suitable process for a specific application remains difficult and mainly depends on the individual know-how within a certain company. Factors such as the material used, part dimension, geometrical features, as well as tolerance requirements contribute to the overall manufacturing costs that need to be economically reasonable compared to conventional processes. Within this contribution, the quantitative analysis of basic geometrical features such as cylinders, thin walls, holes, and cooling channels of a special designed benchmark demonstrator manufactured by LMD; LPBF and EBM are presented to compare the geometrical accuracy within and between these processes to verify existing guidelines, connect the part quality to the process parameters, and demonstrate process-specific limitations. The fabricated specimens are investigated in a comprehensive manner with 3D laser scanning and CT scanning with regard to dimensional and geometrical accuracy of outer and inner features. The obtained results will be discussed and achievable as-built tolerances for assessed demonstrator parts will be classified according to general tolerance classes described [DIN ISO 2768-1,Allgemeintoleranzen-Teil 1: Toleranzen fur Langen- und Winkelmasse ohne einzelne Toleranzeintragung(1991). Accessed 26 February 2018; DIN ISO 2768-2,Allgemeintoleranzen-Teil 2: Toleranzen fur Form und Lage ohne einzelne Toleranzeintragung(1991). Accessed 26 February 2018].

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available