4.7 Article

Experimental and numerical studies on internal solitary waves with a free surface

Journal

JOURNAL OF FLUID MECHANICS
Volume 899, Issue -, Pages -

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2020.451

Keywords

solitary waves; internal waves; general fluid mechanics

Funding

  1. National Natural Science Foundation of China [51490671, 11572093]
  2. International Science and Technology Cooperation Project - National Ministry of Science and Technology of China [2012DFA70420]
  3. Special Fund for Basic Scientific Research of Central Colleges (Harbin Engineering University)

Ask authors/readers for more resources

Large-amplitude internal solitary waves in a two-layer fluid system with a free surface are investigated in this paper. Laboratory experiments on strongly nonlinear internal solitary waves with a free surface for a deep configuration are conducted. After comparing the experimental data with the results of the Miyata-Choi-Camassa model that includes the free-surface effects (MCC-FS), we find that the MCC-FS model does not calculate accurately the internal solitary waves with a free surface. Thus, we develop a strongly nonlinear model for a deep configuration, namely the two-layer high-level Green-Naghdi (HLGN-FS) model that includes the free-surface effects. Numerical results of the HLGN-FS model, including the wave profile, velocity field and wave speed, are presented for three cases. The first case is a shallow configuration with rho(2)/rho(1) = 0.977 and h(2)/h(1) = 1/4.13, where rho(2) and rho(1) are the densities of the upper-fluid layer and the lower-fluid layer, respectively, and h(2) and h(1) are the depths of the upper-fluid layer and the lower-fluid layer, respectively. The second case is also a shallow configuration, where h(2)/h(1) = 1/5 while rho(2)/rho(1) = 0.859. The third case is related to the present physical experiments, where rho(2)/rho(1) = 0.869 and h(2)/h(1) = 1/15. It is shown that the MCC-FS model can provide accurate results for the shallow configurations. Meanwhile, the HLGN-FS model is shown to be accurate for describing the internal solitary waves for both shallow and deep configurations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available