4.7 Article

Cytotoxic effects, carbonic anhydrase isoenzymes, α-glycosidase and acetylcholinesterase inhibitory properties, and molecular docking studies of heteroatom-containing sulfonyl hydrazone derivatives

Journal

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS
Volume 39, Issue 15, Pages 5539-5550

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2020.1792345

Keywords

Heteroatom; sulfonyl hydrazone; anticancer; antibacterial; enzyme inhibition; docking

Ask authors/readers for more resources

The research on heteroatom-containing sulfonyl hydrazone derivatives shows their significance in anticancer, antimicrobial properties, and effects on Alzheimer's and diabetes. These compounds exhibited strong biological activities against enzymes and common bacteria, showcasing potential for therapeutic applications in various diseases.
Today, interest in studies on the search for new drugs to be used in diseases such as cancer, cardiovascular diseases, neurodegenerative diseases and diabetes, as well as prevention of microbial inflammation is increasing day by day. Emerging biological and pharmacological effects of sulfonyl hydrazone derivative compounds reveal their importance. In the present study, heteroatom-containing sulfonyl hydrazone derivatives have been studied for their anticancer and antimicrobial properties, as well as their effects on enzymes that could play roles in Alzheimer's dissease and diabetes. High doses of the tested compounds significantly decreased the cell viabilities of breast cancer (MCF-7) and prostate cancer (PC-3) cell lines. Furthermore, all compounds possessed antimicrobial activities against very common bacteriaE. coliandS. aureus. These compounds were good inhibitors of the alpha-glycosidase, human carbonic anhydrase I and II isoforms and acetylcholinesterase enzyme withK(i)values in the range of 1.14 +/- 0.14-3.63 +/- 0.26 nM for alpha-glycosidase, 66.05 +/- 9.21-125.45 +/- 11.54 nM for hCA I, 89.14 +/- 10.43-170.22 +/- 26.05 nM for hCA II and 754.03 +/- 73.22-943.92 +/- 58.15 nM for AChE, respectively. Molecular docking method was used to theoretically compare biological activities of sulfonyl hydrazone derivatives against enzymes. The theoretical results were compared with the experimental results. Thus, these compounds have strong biological activities. Communicated by Ramaswamy H. Sarma

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available