4.7 Review

Effect of topological structure on photoluminescence of CsPbBr3 quantum dot doped glasses

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 826, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2020.154111

Keywords

CsPbBr3 QDs; Topological structure; Glass

Funding

  1. National Natural Science Foundation of China [11774138, 51862020, 11804255, 11664022]
  2. Foundation of Yunnan Province [2019HC016]

Ask authors/readers for more resources

Glasses doped with CsPbBr3 quantum dots (QDs) were prepared by a conventional melt-quenching process followed by heat treatment, which exhibit good thermal stabilities and optical properties. A narrow visible photoluminescence (PL) emission (508-528 nm) band with a shift in luminescence peak position and a significant change in emission intensity was observed, depending on the B2O3 concentration. Transmission electron microscopy (TEM) showed changes in the size and number of QDs with change in glass composition. The PL decay time was about 0.92-1.58 us, and it showed an increasing trend with increasing size of the QDs. With decreasing concentration of B2O3, the network structure of the glass exhibit a high aggregated state, thus providing sufficient growth space to the QDs. The luminescence of the QDs glass was found to be controlled by changing glass topology. The tunable narrow band emission of CsPbBr3 QDs doped glass may have potential applications in new generation of display materials. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available