4.6 Article

Radiative hybrid nanofluid flow past a rotating permeable stretching/shrinking sheet

Publisher

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/HFF-03-2020-0149

Keywords

Radiation; Hybrid nanofluid; Stability analysis; Rotating stretching; shrinking sheet

Funding

  1. Fundamental Research Grant Scheme [FRGS/1/2018/STG06/UPM/02/4]
  2. Ministry of Higher Education Malaysia

Ask authors/readers for more resources

This paper discusses the stability analysis of Cu-Al2O3/water nanofluid under radiation and suction effects on a rotating stretching/shrinking sheet. The study reveals non-unique solutions for certain shrinking parameter values and significant impact of suction parameter on obtaining solutions. The presence of copper nanoparticle volume fractions results in increased local skin friction and decreased local Nusselt number on the shrinking surface.
Purpose This paper aims to discuss a stability analysis on Cu-Al2O3/water nanofluid having a radiation and suction impacts over a rotating stretching/shrinking sheet. Design/methodology/approach The partial differential equations are converted into nonlinear ordinary differential equations using similarity transformation and then being solved numerically using built in function in Matlab software (bvp4c). The effects of pertinent parameters on the temperature and velocity profiles together with local Nusselt number and skin friction are reported. Findings Compared to previously published studies, the current work is noticed to be in good deal. The analysis further shows that the non-unique solutions exist for certain shrinking parameter values. Hence, a stability analysis is executed using a linear temporal stability analysis and concluded that the second solution is unstable, while the first solution is stable. The effect of suction parameter is observed to be significant in obtaining the solutions. The improvement of the local skin friction and the decrease of the local Nusselt number on the shrinking surface are observed with the increment of the copper nanoparticle volume fractions. Originality/value The originality of current work is the numerical solutions and stability analysis of hybrid nanofluid in rotating flow. This work has also resulted in producing the non-unique solutions for the shrinking sheet, and a stability analysis has also been executed for this flow showing that the second solution is unstable, while the first solution is stable. This paper is therefore valuable for engineers and scientist to get acquainted with the properties of the flow, its behavior and the way to predict it. The authors admit that all the findings are original and were not published anywhere else.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available