4.7 Article

Effectiveness of temperature-dependent properties of Au, Ag, Fe3O4, Cu nanoparticles in peristalsis of nanofluids

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.icheatmasstransfer.2020.104651

Keywords

Peristaltic flow; Nanofluids; Joule heating; Thermal conductivity models; Thermal and velocity slip

Funding

  1. Higher Education Commisson (HEC) of Pakistan [7395/Federal/NRPU/RD/HEC/2017]

Ask authors/readers for more resources

It is well established that change in temperature perturbs fluid properties, therefore present study analyzes MHD peristalsis of nanofluids with temperature dependent viscosity and thermal conductivity. Four different nanoparticles i.e. Gold (Au), Silver (Ag), Iron oxide (Fe3O4) and Copper (Cu) are used in the analysis. Joule heating with mixed convection is also taken into consideration. Modifications to the famous Maxwell's and Hamilton-Crosser's thermal conductivity models are proposed by incorporating the effects of temperature. Arising nonlinear system is solved numerically using the built-in package NDSolve in Mathematica under the assumption of long wavelength and low Reynolds number. Results are displayed through graphs and tables to facilitate the physical analysis. It is noted that temperature dependence of viscosity and thermal conductivity alter the results. It is deduced that heat transfer rate can be improved by addition of iron oxide nanoparticles. Comparison for various nanoparticles and thermal conductivity models is also presented. It is noticed that the Maxwell's model shows enhancement in the results of velocity, temperature and heat transfer rate. Also, iron oxide Fe3O4 nanoparticles provide better rate of heat transport at boundary as compared to other nanoparticles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available