4.7 Article

CT Image-Guided Electrical Impedance Tomography for Medical Imaging

Journal

IEEE TRANSACTIONS ON MEDICAL IMAGING
Volume 39, Issue 6, Pages 1822-1832

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMI.2019.2958670

Keywords

Computed tomography; cross-gradient function; electrical impedance tomography; lung imaging

Funding

  1. National Natural Science Foundation of China [41674120, 61871356]

Ask authors/readers for more resources

This study presents a computed tomography (CT) image-guided electrical impedance tomography (EIT) method for medical imaging. CT is a robust imaging modality for accurately reconstructing the density structure of the region being scanned. EIT can detect electrical impedance abnormalities to which CT scans may be insensitive, but the poor spatial resolution of EIT is a major concern for medical applications. A cross-gradient method has been introduced for oil and gas exploration to jointly invert multiple geophysical datasets associated with different medium properties in the same geological structure. In this study, we develop a CT image-guided EIT (CEIT) based on the cross-gradient method. We assume that both CT scanning and EIT imaging are conducted for the same medical target. A CT scan is first acquired to help solve the subsequent EIT imaging problem. During EIT imaging, we apply cross gradients between the CT image and the electrical conductivity distribution to iteratively constrain the conductivity inversion. The cross-gradient based method allows the mutual structures of different physical models to be referenced without directly affecting the polarity and amplitude of each model during the inversion. We apply the CEIT method to both numerical simulations and phantom experiments. The effectiveness of CEIT is demonstrated in comparison with conventional EIT. The comparison shows that the CEIT method can significantly improve the quality of conductivity images.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available