4.3 Article

Metal contamination assessment in water column and surface sediments of a warm monomictic man-made lake: Sabalan Dam Reservoir, Iran

Journal

HYDROLOGY RESEARCH
Volume 51, Issue 4, Pages 799-814

Publisher

IWA PUBLISHING
DOI: 10.2166/nh.2020.160

Keywords

arsenic; contamination index; copper; sediment pollution; water quality

Funding

  1. Ardabil Regional Water Authority Major Project: Reduced-Order Modeling of Eutrophication and Water Quality of the Most Important Dams in Ardabil Province [ARE-93037]
  2. National Natural Science Foundation of China [41790424]
  3. International Partnership Program of Chinese Academy of Sciences [131A11KYSB20170113]
  4. International Fellowship Initiative, IFI-IGSNRR

Ask authors/readers for more resources

In this study, metal concentrations in the water column and surface sediment of the Sabalan Dam Reservoir (SDR) were determined. Moreover, heavy metal pollution index (HPI), contamination index (CI), heavy metal evaluation index (HEI), enrichment factor (EF), geo-accumulation index (I-geo), sediment quality guidelines (SQGs), consensus-based SQGs (C-BSQGs), and mean probable effect concentration quotients (mPECQs) were evaluated for water and sediments of SDR. It was observed that metal concentrations in river entry sediment were lower, but those in river entry water were higher than corresponding values in the vicinity of the dam structure. The HPI values of water samples taken from 10 m depth in the center of SDR exceeded the critical limit, due to high concentrations of arsenic. However, according to CI, the reservoir water was not contaminated. The HEI values indicated contamination of SDR water with metals at 10 m depth. A comparison of water quality indices revealed that HEI was the most reliable index in water quality assessment, while CI and HPI were not sufficiently accurate. For SQGs, As and Cu concentrations in sediments were high, but mPECQ,I-geo, and EF revealed some degree of sediment pollution in SDR. The calculated EF values suggested minor anthropogenic enrichment of sediment with Fe, Co, V, and Ni; moderate anthropogenic enrichment with As and Mn; and moderate to severe anthropogenic enrichment with Cu. A comparison of SQG values revealed that the threshold effect and probable effect levels were the most reliable metrics in the assessment of sediment toxicity. Statistical analysis indicated similarities between metal concentrations in the center of the reservoir and near to the dam structure, as a result of similar sediment deposition behavior at these points, while higher flow velocity at the river entry point limited deposition of fine particles and associated metals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available