4.3 Article

Antimalarial agent artesunate induces G0/G1 cell cycle arrest and apoptosis via increasing intracellular ROS levels in normal liver cells

Journal

HUMAN & EXPERIMENTAL TOXICOLOGY
Volume 39, Issue 12, Pages 1681-1689

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0960327120937331

Keywords

Artesunate; BRL-3A cells; cell cycle arrest; apoptosis

Categories

Funding

  1. National Natural Science Foundation [31672595]
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Ask authors/readers for more resources

Artesunate (ARS) has been shown to be highly effective against chloroquine-resistant malaria. In vitro studies reported that ARS has anticancer effects; however, its detrimental action on cancer cells may also play a role in its toxicity toward normal cells and its potential toxicity has not been sufficiently researched. In this study, we investigated the possible cytotoxic effects using normal BRL-3A and AML12 liver cells. The results showed that ARS dose-dependently inhibited cell proliferation and arrested the G0/G1 phase cell cycle in both BRL-3A and AML12 liver cells. Western blotting demonstrated that ARS induced a significant downregulation of cyclin-dependent kinase-2 (CDK2), CDK4, cyclin D1, and cyclin E1 in various levels and then caused apoptosis when the Bcl-2/Bax ratio decreased. Conversely, the levels of intracellular reactive oxygen species (ROS) were increased. The ROS scavengerN-acetylcysteine can significantly inhibit cell cycle arrest and apoptosis induced by ARS. Thus, the data confirmed that ARS exposure impairs normal liver cell proliferation by inducing G0/G1 cell cycle arrest and apoptosis, and this detrimental action may be associated with intracellular ROS accumulation. Collectively, the possible side effects of ARS on healthy normal cells cannot be neglected when developing therapies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available