4.6 Article

Overexpressing Jatropha curcas CBF2 in Nicotiana benthamiana improved plant tolerance to drought stress

Journal

GENE
Volume 742, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.gene.2020.144588

Keywords

Jatropha curcas; JcCBF2; Drought stress; RNA sequencing; Phytohormone

Funding

  1. Special Project for Breeding and Cultivation of GMO Varieties of Ministry of Agriculture, China [2016ZX08010001-010]

Ask authors/readers for more resources

Jatropha curcas is an important bioenergy oil plant, and often planted on barren land to save the area of arable land. It is significant to improve the adaptability of J. curcas to various abiotic stresses. In the present study, we transferred a J. curcas gene, encoding a CBF2 transcription factor, into Nicotiana benthamiana. Under drought treatment, the JcCBF2 transgenic lines showed improved survival rate, leaf water retention and active oxygen scavenging capacity, but reduced photosynthesis and transpiration rate, suggesting that JcCBF2 played an important role in improving plant drought tolerance. Overexpressing JcCBF2 decreased leaf area and increased leaf thickness. To explore the possible mechanisms for the change of leaf anatomical structure, the leaves of wildtype and overexpression lines under drought stress were RNA sequenced. Genes involved in the plant hormones signal transduction were found to be enriched. Cytokinin and indole-3-acetic acid were the major plant hormones whose abundance increased. Quantitative RT-PCR analysis showed expression of NbMYB21, NbMYB86 and NbMYB44 and both abscisic acid (ABA) and jasmonic acid (JA) related genes in the overexpression lines were increased under drought stress. These results indicated that JcCBF2 was able to positively regulate plant drought response by changing the leaf anatomical structure and possibly through JA and ABA signalling pathways. Our work may help us to understand the drought tolerant mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available