4.7 Article

Radiomics nomogram for the prediction of 2019 novel coronavirus pneumonia caused by SARS-CoV-2

Journal

EUROPEAN RADIOLOGY
Volume 30, Issue 12, Pages 6888-6901

Publisher

SPRINGER
DOI: 10.1007/s00330-020-07032-z

Keywords

Coronavirus infections; Tomography; x-ray computed; Pneumonia; viral; Thorax; Radiomics; nomograms

Funding

  1. National Science Foundation for Scientists of China [81871352]
  2. National Science Foundation for Young Scientists of China [81701689]

Ask authors/readers for more resources

Objectives To develop and validate a radiomics model for predicting 2019 novel coronavirus (COVID-19) pneumonia. Methods For this retrospective study, a radiomics model was developed on the basis of a training set consisting of 136 patients with COVID-19 pneumonia and 103 patients with other types of viral pneumonia. Radiomics features were extracted from the lung parenchyma window. A radiomics signature was built on the basis of reproducible features, using the least absolute shrinkage and selection operator method (LASSO). Multivariable logistic regression model was adopted to establish a radiomics nomogram. Nomogram performance was determined by its discrimination, calibration, and clinical usefulness. The model was validated in 90 consecutive patients, of which 56 patients had COVID-19 pneumonia and 34 patients had other types of viral pneumonia. Results The radiomics signature, consisting of 3 selected features, was significantly associated with COVID-19 pneumonia (p < 0.05) in both training and validation sets. The multivariable logistic regression model included the radiomics signature and distribution; maximum lesion, hilar, and mediastinal lymph node enlargement; and pleural effusion. The individualized prediction nomogram showed good discrimination in the training sample (area under the receiver operating characteristic curve [AUC], 0.959; 95% confidence interval [CI], 0.933-0.985) and in the validation sample (AUC, 0.955; 95% CI, 0.899-0.995) and good calibration. The mixed model achieved better predictive efficacy than the clinical model. Decision curve analysis demonstrated that the radiomics nomogram was clinically useful. Conclusions The radiomics model derived has good performance for predicting COVID-19 pneumonia and may help in clinical decision-making.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available