4.7 Article

Solid-like and liquid-like granular flows on inclined surfaces under vibration - Implications for earthquake-induced landslides

Journal

COMPUTERS AND GEOTECHNICS
Volume 123, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compgeo.2020.103598

Keywords

Earthquake-induced landslides; Discrete element method (DEM); Granular rheology; Chute flow; Enhanced mobility

Funding

  1. National Natural Science Foundation of China [51808401, 41728006, 41831291]
  2. China Postdoctoral Science Foundation [2017M620167]
  3. UK Natural Environment Research Council [NE/R011001/1]
  4. NERC [NE/R011001/1] Funding Source: UKRI

Ask authors/readers for more resources

Earthquake-induced landslides can result in serious property damage and significant casualties. Although extensive research has been conducted to investigate their extraordinarily long runout, the underlying mechanism remains a very challenging open problem. In this paper, we explore the effect of vibration on landslide runout through simulations of simplified granular chute flows using the discrete element method with a focus on surface-normal vibration. We show that the mobility of the flows is enhanced by low-frequency vibration for inclination angles of both 19 degrees and 24 degrees. The flows are, however, strikingly different - solid-like for the former and liquid-like for the latter, as revealed by their microstructure and stress states. The vibration enhances the mobility through reduction in the normal load and in the solid volume fraction for the 19 degrees and the 24 degrees flows respectively. This work reveals complexities in the rheological states and the dynamic responses of inclined-surface granular flows under vibration, serving as an initial step to unravelling the full dynamic mechanisms of the long runout of earthquake-induced landslides.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Review Engineering, Civil

Review on key issues in centrifuge modeling of flow-structure interaction

Yu Huang, Bei Zhang

Summary: Flow-structure interaction is crucial for preventing geo-disasters, and physical modeling is challenging due to complex rheology, transient nature, and nonlinear response. Hierarchical scaling and coupled modeling are recommended to address key issues, while investigating the impact of Coriolis effect. Robust numerical tools are also recommended for experiment design and mechanism exploration.

EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING (2022)

Article Engineering, Civil

Challenges and perspectives in designing engineering structures against debris-flow disaster

Yu Huang, Bei Zhang

Summary: Debris-flow disaster has caused significant casualties and economic losses. The design strategy for disaster prevention should focus on improving impact force estimation, run-up height prediction, failure analysis, and plain configuration planning. Current methods mostly rely on hydraulic theory, lacking consideration for physical mechanisms, such as nonstationary flow regimes, impact patterns, and barrier characteristics. Physically based design strategies and robust physical modeling methods and numerical simulation tools are needed to understand flow-structure interaction mechanisms and verify structure design strategies. Additionally, the resilience-based disaster prevention concept should be emphasized for effective preparedness, response, and recovery.

EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING (2022)

Article Engineering, Geological

Impact behavior of superspeed granular flow: Insights from centrifuge modeling and DEM simulation

Bei Zhang, Yu Huang

Summary: The impact behavior of superspeed granular flows is crucial for barrier design, but lacks sufficient understanding. This study used centrifuge modeling and numerical modeling to investigate the energy consumption mechanism during granular flow impacts and proposed a static failure mode to estimate the action force. Additionally, it was found that reduced scale models under lower stress conditions may underestimate the impact force.

ENGINEERING GEOLOGY (2022)

Article Engineering, Geological

Shaking table tests on slope reinforced by anchored piles under random earthquake ground motions

Hongqiang Hu, Yu Huang, Liuyuan Zhao, Min Xiong

Summary: This study investigates the stochastic seismic responses of a slope reinforced by an anchored pile structure through shaking table tests. It is found that under random excitation, the seismic responses of the slope exhibit significant variability. The use of probabilistic methods allows for a more reliable assessment of the slope's seismic response.

ACTA GEOTECHNICA (2022)

Editorial Material Environmental Sciences

Mechanism and Prevention of Debris Flow Disaster

Yu Huang, Jin Sun, Chongqiang Zhu

WATER (2022)

Article Environmental Sciences

A GPU-Based δ-Plus-SPH Model for Non-Newtonian Multiphase Flows

Hao Shi, Yu Huang

Summary: This article describes a multiphase extension of the delta-plus-SPH model for modeling non-Newtonian multiphase flow. Modifications are made to improve the accuracy and stability, including a modified numerical diffusive term and a special shifting treatment near the phase interface. The Herschel-Bulkley model is used to describe non-Newtonian fluids, and a sub-particle term is added in the momentum equation for large eddy simulation. The GPU acceleration technique is applied for computational efficiency. Tests show that the proposed SPH model can accurately capture highly transient incompressible two-phase flows with consistent pressure across the interface.

WATER (2022)

Article Computer Science, Interdisciplinary Applications

Multi-objective optimization design of pile-anchor structures for slopes based on reliability theory considering the spatial variability of soil properties

Yu Huang, Zhengying He, Atsushi Yashima, Zhiyi Chen, Chunxiang Li

Summary: A framework for multi-objective optimization design of Pile-anchor structures (PAS) in slopes is proposed in this study, considering the uncertainty of soil properties. The framework incorporates reliability theory and Monte Carlo simulations to account for the spatial variability of soil properties. An illustrative example demonstrates that the optimal PAS design achieves minimum failure probability and lowest total cost.

COMPUTERS AND GEOTECHNICS (2022)

Article Geosciences, Multidisciplinary

Numerical analysis of debris flow erosion in the mountainous areas affected by the 2008 Wenchuan earthquake using a depth-averaged two-phase model

Hualin Cheng, Martin Mergili, Yu Huang

Summary: This study uses a numerical model to analyze the flow and sediment erosion processes of debris flows. The results show that the erosion models accurately predict the movement and channel erosion of the debris flows, and the most serious sediment erosion occurs along the sides of the channels. In addition, the model is applied to predict the dynamical behavior and bulking process of a specific debris flow, showing an increase in discharge and hazard intensity due to sediment erosion. This study provides more scientific basis for risk assessment and hazard mitigation of large-scale debris flows in mountainous areas.

NATURAL HAZARDS (2023)

Article Chemistry, Physical

Impact of granular inclusions on the phase behavior of colloidal gels

Yankai Li, John R. Royer, Jin Sun, Christopher Ness

Summary: Colloidal gels formed with small attractive particles are often used in formulations to suspend larger components. However, the effect of larger inclusions on the phase behavior and microstructure of the colloidal system remains poorly understood. This study uses numerical simulations to investigate how larger 'granular' particles can affect the gel transition phase boundaries. Two regimes are identified, depending on the filler size and native gel structure: a 'passive' regime where the filler fits into existing voids with minimal change in the transition, and an 'active' regime where the filler perturbs the native structure and controls the phase boundary based on available free volume.

SOFT MATTER (2023)

Article Geosciences, Multidisciplinary

Crown-Like Baffle System against Rock Avalanches: Energy Dissipation Mechanism and Numerical Verification

Yu Huang, Hao Shi, Bei Zhang

Summary: In mountainous areas, rock avalanches can cause large impact forces on structures. Baffle systems are commonly used in torrent channels to dissipate flow energy and minimize destructive effects. This paper presents a crown-like baffle system that effectively dissipates flow energy through particle-particle interaction. The results show that the proposed baffle system can reduce the residual kinetic energy by up to 18.75% compared to a conventional baffle system, making it a cost-effective solution.

JOURNAL OF EARTH SCIENCE (2023)

Article Engineering, Geological

A modified deformation coordination model for calculating the internal force of anchored piles

Yu Huang, Boyu Fu, Zhen Guo, Atsushi Yashima

Summary: In this paper, a modified deformation coordination model is proposed to accurately calculate the internal force of anchored piles. The interaction between the anchor and pile is divided into two stages: the application of prestressed anchor cables and the action of landslide thrust. Using the virtual work principle and graph multiplication theory, a deformation coordination equation is established and the calculation formula for anchor cable tensile stress is obtained. An engineering case study demonstrates the capability of the proposed model to calculate the internal force of anchored piles.

SOILS AND FOUNDATIONS (2023)

Article Engineering, Geological

Rainfall-oriented resilient design for slope system: Resilience-enhancing strategies

Yu Huang, Zhengying He

Summary: This study proposes a novel methodology for implementing rainfall-resilient design for slope systems by combining the resilience design philosophy and stability analysis. The design-oriented resilient criterion and recovery strategies for slope systems are analyzed and compared with traditional design criteria. This rainfall-resilient design can effectively support landslide mitigation in the coastal area of Southeast China.

SOILS AND FOUNDATIONS (2023)

Article Computer Science, Interdisciplinary Applications

Simulation of non-cohesive soil turning based on an SPH model

Dianlei Feng, Can Yi, Man Hu, Tao Gao, Yu Huang

Summary: In this study, a new soil turning numerical model based on the SPH method has been proposed, and an elastoplastic constitutive model has been implemented. The model was validated through a landslide benchmark test and a combined experimental numerical investigation on the soil turning process. The results show that the proposed SPH model can accurately reproduce the soil turning process.

COMPUTERS AND GEOTECHNICS (2023)

Article Engineering, Civil

Shaking table tests on the seismic response of slopes to near-fault ground motion

Chongqiang Zhu, Hualin Cheng, Yangjuan Bao, Zhiyi Chen, Yu Huang

Summary: This study investigated the effects of horizontal pulse-like motion and vertical component on the dynamic response of slopes through shaking table tests. The results showed that the vertical component has limited influence on seismic response under pulse-like ground motion, but it greatly enhances the response under ordinary horizontal motion. It is important to pay attention to vertical ground motion, especially when its horizontal component is ordinary ground motion.

GEOMECHANICS AND ENGINEERING (2022)

Article Computer Science, Interdisciplinary Applications

A study of Hydraulic fracture propagation in laminated shale using extended finite element method

Yinghao Deng, Yang Xia, Di Wang, Yan Jin

Summary: This study investigates the mechanism of hydraulic fracture propagation in laminated shale, develops a numerical solver, and validates the effectiveness of the method through simulation experiments. The study also examines the influence of the interaction between hydraulic fractures and weak interfaces on the mechanical properties of shale.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

A thermodynamic constitutive model for structured and destructured clays

Zhichao Zhang, Mingfei Feng, Guangshuo Zhou, Zhenglong Xu

Summary: A thermodynamic constitutive model for structured and destructured clays is proposed in this paper. The model includes state-dependent relations of hyperelasticity and plasticity without the concept of yielding surface. The proposed model captures the couplings between elasticity and plasticity and the effects of bonding structure.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Influence of particle shape on creep and stress relaxation behaviors of granular materials based on DEM

Deze Yang, Xihua Chu

Summary: Creep and stress relaxation behaviors in granular materials are influenced by the time-dependent changes in their microstructure, with particle shape playing a significant role. However, the effects of particle shape on these behaviors are still not well understood. In this study, 3D DEM models incorporating the rate process theory and superellipsoids are used to simulate creep and stress relaxation in granular samples with different aspect ratios and blockiness. The results show that both aspect ratio and blockiness have a significant influence on creep and stress relaxation, with aspect ratio affecting creep through contact force ratio and blockiness affecting stress relaxation through variation in normal contact force anisotropy. These findings provide insights into the effects of particle shape on creep and stress relaxation in granular assemblies.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Modified non-dominated sorting genetic algorithm-II for the optimal design of soil-concrete periodic plane wave barriers

Shahab Amanat, Kourosh Gholami, Reza Rafiee-Dehkharghani, Dipanshu Bansal

Summary: This paper investigates the optimal design of wave barriers using the modified non-dominated sorting genetic algorithm-II (NSGA-II) and the Bloch-Floquet theory. The aim is to find the optimal design of plane wave barriers with a wide bandgap at a low-frequency range and low construction cost. The study develops a modified NSGA-II algorithm to determine the optimal arrangement of concrete in wave barrier unit cells. The performance of the optimal barriers is examined through finite element simulation and their efficacy in attenuating plane S-waves is verified.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Elastic-viscoplastic model for coarse-grained soil considering particle breakage

Yanlin Su, Guoqing Cai, Fengjie Yin, Yepeng Shan, Annan Zhou

Summary: This paper presents a novel elastic-viscoplastic constitutive model that takes into account particle breakage to reproduce the time-dependent behavior of coarse-grained soil. The model integrates the Unified Hardening (UH) model, the elastic-viscoplastic (EVP) model, and the overstress theory. The relationship between particle breakage and loading rate is established, and state variables associated with the critical state of coarse-grained soil are derived to consider both time and particle breakage. A three-dimensional elastic-viscoplastic constitutive model is constructed by combining a one-dimensional viscoplastic hardening parameter with a secondary consolidation coefficient considering particle breakage. The proposed model requires 19 parameters and effectively describes the influence of time-dependency and particle breakage on the shear, dilatancy, and compression behaviors of coarse-grained soil with different confining pressures or initial void ratios. Experimental data comparisons validate the model's ability to replicate the time-dependent behavior of coarse-grained soil.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Probabilistic analysis of ground settlement induced by tunnel excavation in multilayered soil considering spatial variability

Shichao Zhang, Yaqiong Wang, Qidong Gao, Xiaobo Ma, Haixiao Zhou, Zhifeng Wang

Summary: Accurately evaluating and predicting ground settlement during tunnel excavation is essential for ensuring tunnel stability. This study conducted a probabilistic analysis of ground settlement under uncertain soil properties. The results demonstrate that spatially variable soils significantly influence the ground settlement in the vertical direction.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Theoretical analysis of stratum horizontal displacements caused by small radius curve shield tunneling

Xu Zhang, Bin Luo, Youjun Xu, Zhiwen Yang

Summary: This paper presents an analytical solution for horizontal displacements induced by small radius curve shield tunneling. The formula is derived based on the image method and Mindlin solution, considering additional thrust, frictional resistance, ground loss, and grouting pressure. The solution is validated with on-site data, demonstrating its reliability and providing a new approach for predicting and controlling stratum horizontal displacements in curve shield tunneling. The study finds that ground loss has the most significant influence on displacements, and soil closer to the tunnel exhibits larger horizontal displacements.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Insight into enhancing foundation stability with rubber-soil mixtures: A nanofriction study

Jian-Hong Wan, Ali Zaoui

Summary: Ground vibrations during earthquakes can cause soil strength loss and structural damage. Rubber-soil mixtures (RSM) have shown promise in reducing residual ground deformation. This study used molecular dynamics simulations to investigate the friction behavior of the rubber-clay interface in RSM systems. The results revealed a direct correlation between normal stress and friction force, with denser soil systems exhibiting higher friction forces.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Elastoplastic solution of a circular tunnel in surrounding rock with any nonlinear yield criteria and plastic flow envelopes

Hongying Wang, Qiang Zhang, Peinan Wu, Yanjing Li, Lijun Han, Guilei Han

Summary: In addition to the Mohr-Coulomb and Hoek-Brown criteria, other nonlinear functions are used to describe the plastic response of rock mass. This paper derived the equivalent cohesive strength, frictional angle, and dilatancy angle for nonlinear yield and plastic flow rock masses. The solution for a circular tunnel in any nonlinear yield and plastic flow rock masses was derived and verified using a numerical procedure. The analysis of strain-softening rock masses under two assumed nonlinear yield criteria was also studied.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Machine learning approach to predicting the macro-mechanical properties of rock from the meso-mechanical parameters

Zhijun Wu, You Wu, Lei Weng, Mengyi Li, Zhiyang Wang, Zhaofei Chu

Summary: This study proposed a machine learning approach to predict the uniaxial compression strength (UCS) and elastic modulus (E) of rocks. By measuring meso-mechanical parameters and developing grain-based models, a database with 225 groups of data was established for prediction models. The optimized kernel ridge regression (KRR) and gaussian process regression (GPR) models achieved excellent performance in predicting UCS and E.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Two-phase modelling of erosion and deposition process during overtopping failure of landslide dams using GPU-accelerated ED-SPH

Mingjun Zhou, Zhenming Shi, Chong Peng, Ming Peng, Kahlil Fredrick E. Cui, Bo Li, Limin Zhang, Gordon G. D. Zhou

Summary: In this paper, the erosion and deposition processes during overtopping dam breaching are simulated using a novel method (ED-SPH). The proposed model is able to capture the complex behaviors of dam soil erosion, entrainment, and depositions. Soil deposition hinders particle movement and reduces water velocity at the water-soil interface.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Interface formulation for generalized finite difference method for solving groundwater flow

C. Chavez-Negrete, F. J. Dominguez-Mota, R. Roman-Gutierrez

Summary: To accurately simulate groundwater flow in porous layered media, it is important to consider all environmental factors and use a generalized finite differences scheme as a meshless method for spatial discretization. This approach ensures robustness and accuracy of the numerical solution.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Application of improved Picard iteration method to simulate unsaturated flow and deformation in deformable porous media

Shuairun Zhu, Lulu Zhang, Lizhou Wu, Lin Tan, Haolong Chen

Summary: This paper investigates the effectiveness of the cascadic multigrid method applied to the improved Picard iteration method for solving nonlinear problems in deforming variably saturated porous media. Two improved Picard iteration methods are proposed, and their effectiveness is verified through numerical examples. The results show that the improved methods have faster convergence and higher computational efficiency compared to the classical method.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Evaluation of the horizontal cyclic shear stress on the enclosed soil in DSM grid-improved ground by numerical simulation

Yuan Cao, Yan-Guo Zhou, Kyohei Ueda, Yun-Min Chen

Summary: Investigated shear stress responses of enclosed soil in deep soil mixing (DSM) grid-improved ground, and revealed the characteristics of the waist effect and mathematical model for shear stress reduction ratio.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Predicting peak shear strength of rock fractures using tree-based models and convolutional neural network

Jinfan Chen, Zhihong Zhao, Jintong Zhang

Summary: This study develops data-driven criteria to estimate the peak shear strength (PSS) of rock fractures, considering the effects of surface roughness features. A high-quality dataset is created using particle-based discrete element method and diamond-square algorithm. Tree-based models and convolutional neural network are trained to predict the PSS of rock fractures, and their reliability is verified using experimental data.

COMPUTERS AND GEOTECHNICS (2024)