4.7 Article

Vegetation alleviate the negative effects of graphene oxide on benzo [a]pyrene dissipation and the associated soil bacterial community

Journal

CHEMOSPHERE
Volume 253, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.126725

Keywords

Phytoremediation; Benzo[a]pyrene; Graphene oxide; Dissipation; Bacterial community

Funding

  1. National Natural Science Foundation of China [31600411]
  2. High Quality Food Microbiology Curriculum of Shanxi Normal University [2017YZKC-24]

Ask authors/readers for more resources

Graphene oxide (GO) will enter the soil environment in increasing amounts. The effects of GO on the dissipation of benzo[a]pyrene (B[a]P) from contaminated soil and their phytoremediation system have been explored in this study. B[a]P is a ubiquitous soil pollutant used as a representative indicator of polycyclic aromatic hydrocarbons. A pot experiment was performed to investigate the effects of GO or/and vegetation (Tagetes patula) on B[a]P dissipation and the associated bacterial communities in soil. The bacterial communities in soil were investigated by Illumina sequencing analysis. The presence of vegetation significantly enhanced the dissipation of B[a]P from soil. The addition of GO (100 mg/kg) significantly decreased the B[a]P dissipation. When vegetation and GO coexisted, the inhibition effects of GO on B[a]P dissipation were alleviated by vegetation. Compared with the control treatment, the presence of GO or vegetation had no significant effects on the richness and diversity of bacterial communities in B[a]P-contaminated soil. Compared with the presence of only vegetation, the richness and diversity all significantly decreased when vegetation and GO coexisted. And, vegetation had a greater influence on the bacterial community composition than GO. Vegetation alleviated the inhibition effects of GO on B[a]P dissipation and had a greater influence on the associated bacterial communities than GO. This work helps to understand the interactive effects of GO and vegetation on B[a]P dissipation and the associated bacterial communities in contaminated soil. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available