4.7 Article

2D/1D protonated g-C3N4/α-MnO2 Z-scheme heterojunction with enhanced visible-light photocatalytic efficiency

Journal

CERAMICS INTERNATIONAL
Volume 46, Issue 16, Pages 25905-25914

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2020.07.075

Keywords

Protonated g-C3N4 nanosheets; alpha-MnO2 nanorods; Heterojunction; Photocatalytic; In-situ synthesis; Protonated g-C3N4 nanosheets; alpha-MnO2 nanorods; Heterojunction; Photocatalytic; In-situ synthesis

Funding

  1. Natural Science Foundation of Shandong Province [ZR2019MB019, ZR2019QB023, ZR2018MEM020]

Ask authors/readers for more resources

One of the methods to improve the photocatalytic performance is to construct Z-scheme heterojunction photocatalysts that tightly combine and have more active surfaces/interfaces sites. In this study, two-dimensional (2D) protonated g-C3N4 (pg-C3N4) nanosheets composited with one-dimensional (1D) alpha-MnO2 nanorods heterojunction were prepared by an in-situ hydrothermal treatment of KMnO4 together with bulk g-C3N4 in hydrochloric acid solution. The physicochemical properties of the heterojunctions were systematically evaluated by a series of tests. Visible-light photocatalytic degradation of coloured Rhodamine B (RhB) and colourless phenol are investigated. The results indicated that the 2D pg-C3N4 nanosheet facilitates the formation of 1D alpha-MnO2 nanorods on its surface and formed 2D/1D heterojunction by the close combination of intermolecular hydrogen and Mn-O-C bond. The heterojunction showed excellent visible-light photocatalytic performance than pure alpha-MnO2 nanorods, bulk g-C(3)N(4 )and pg-C3N4 nanosheets. When the ratio of pg-C3N4 nanosheets to alpha-MnO2 nanorods was 1:2, the calculated first-order rate constant reached to 0.0564 min(-1), which was 43.38, 20.89 and 6.64 times than that of pure alpha-MnO2 nanorods, bulk g-C3N4 and pg-C3N4 nanosheets, respectively. Moreover, the photocatalytic degradation efficiency for RhB remained above 89% after 6 cycles. The transient photocurrent responses, electrochemical impedance spectroscopy (EIS) and radical quenching experiment results indicated that the 2D/1D pg-C3N4/alpha-MnO2 heterojunction has a Z-type charge transfer mechanism, thus significantly reducing the charge transfer resistance of photogenerated electrons and holes between pg-C3N4 nanosheet and alpha-MnO2 nanorod, and effectively improve the visible-light photocatalytic performances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available